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Abstract—The discrete complex image method is one of the
most prominent techniques that handle the Sommerfeld integrals
encountered in the integral equation formulations of multilayered
media. The extraction of surface waves extends the validity of the
method to the far field. These surface waves are expressed in terms
of Hankel functions that suffers a singularity problem at the origin
which contaminates the results in the near field. In this work, we
use a formulation developed recently by the author to derive a new
expression for the surface waves. The new expression is shown to
obviate the singularity of the Hankel functions at the origin, and hence
leads to accurate results in the near field.

1. INTRODUCTION

The analysis of electromagnetic waves interaction with multilayered
structures is one of the most widely studied topics in applied
electromagnetics due to its vast applications in the geophysical
prospecting, wave propagation, microstrip antennas and monolithic
microwave integrated circuits. The mixed-potential integral equation
(MPIE) is the most preferable integral equation used to formulate this
problem [1, 2]. The MPIE requires the computation of the scalar
and magnetic vector potential Green’s functions. These functions
are expressed in terms of infinite integrals, commonly known as
† He is on leave now to the Public Authority for Applied Education and Training (PAAET),
Kuwait.
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Sommerfeld integrals (SI). These integrals are highly oscillatory and
slowly decaying. The numerical integration is very time consuming.
Many techniques have been designed to accelerate the computation
time of these integrals. One of the most efficient and prominent
methods is the discrete complex image method (DCIM) [3, 4]. In
this method, the quasi-static contribution is extracted first from
the spectral Green’s function. The next step is to approximate
the remaining spectral function in terms of a short series of
complex exponentials using the generalized pencil-of-function method
(GPOF) [5]. By invoking standard integral identities [6], a closed-
form solution is obtained. There are two approaches to extract the
quasi-static part for the nonsymmetrical components of the magnetic
vector potential Green’s functions. In the first approach (recognized
here as the conventional approach), the two-level DCIM [7] is employed
to approximate the slowly-decaying spectral tail of Green’s function in
terms of a set of complex images. This approach yields an approximate
expression for the quasi-static part. In the second approach [8], an
exact expression for the quasi-static is developed and a one-level DCIM
is applied to approximate the remaining spectral function.

Extracting only the contribution of the quasi-static part prior to
the application of the DCIM yields accurate results in the near- and
intermediate-field regions. In order to extend the validity of the DCIM
to the far-field region, the contribution of surface-wave poles is also
extracted before applying the GPOF procedure. The surface-wave
term dominates the behavior of Green’s function in the far field. It is
expressed in terms of Hankel functions. Unfortunately, these functions
have a singularity problem at the origin when ρ = 0. This is a well-
known phenomenon which contaminates the results in the near-field
region [9–12]. This technique has been applied for the symmetrical
components and also for the nonsymmetrical components using the
conventional approach.

In this article, we extend the work of [8] to extract the contribution
of surface waves. As it will be clarified in Section 2, the developed
expression of these surface waves is shown to comprise two parts. The
first part is due to the surface-wave poles and is expressed in terms of
Hankel functions. This part is similar to that developed previously for
the symmetrical and nonsymmetrical components. The second part
is due to the Hankel functions singularity at kρ = 0 in the spectral
domain. This pole has a contribution in the near field. Its effect is
to mask the singularity of the Hankel functions in the first part when
ρ = 0 which leads to accurate results in the near-field region.

This paper is organized as follows. The derivation of a
new expression of the surface-wave term for the nonsymmetrical
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components of magnetic vector potential Green’s function is presented
in Section 2. The advantage attained by this expression in removing the
singularity of Hankel functions when ρ = 0 is emphasized. Results of
the proposed method are provided in Section 3. A comparison is made
with the direct numerical integration technique. Concluding remarks
are given in Section 4.
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Figure 1. A current source in a multilayered medium.

2. FORMULATION

A general planar multilayered medium is shown in Fig. 1 where a
current source is located in the top layer. Each layer has a relative
permittivity εri, a relative permeability µri, and thickness hi. The
electromagnetic fields are formulated using the MPIE which involves
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the computation of the scalar and magnetic vector potential Green’s
functions. The nonsymmetrical components of the magnetic vector
potential have a sinφ or cos φ dependency and the typical integral
form can be expressed as [13]

G(ρ; z | z′) = T1

{
G̃(kρ; z | z′)

}
(1)

where G̃(kρ; z | z′) is the spectral-domain counterpart of G(ρ; z | z′),
and

Tn{·} =
1
4π

∫ ∞

−∞
dkρ kn+1

ρ {·} H2
n(kρρ), n = 0, 1 (2)

H2
n is the nth-order Hankel function of the second kind. To

demonstrate clearly our approach, we will consider the case where the
source and field points belong to the same layer (top layer). For such
case, (1) can be written as [8]

G(ρ; z | z′) = T1

{
F̃ (kρ)
2k2

ρ

e−jkzo(z+z′)

}
(3)

where F̃ (kρ) is a spectral function which depends on the physical
parameters of the multilayered medium, kzo =

√
k2

o − k2
ρ, and ko is

the wavenumber of the top layer. In order to evaluate (3) using the
DCIM [7], it is conventionally rewritten in the following form

G(ρ; z | z′) = −j
∂

∂ρ
T0

{
1

j2kzo
F̃c(kρ) e−jkzo(z+z′)

}
(4)

where

F̃c(kρ) = kzo
F̃ (kρ)

k2
ρ

(5)

Before proceeding to evaluate (4) using the DCIM, we follow the usual
procedure and extract the quasi-static and surface-wave contributions
first. As pointed out in [8], the conventional formulation of the
nonsymmetrical components, as given by (4), does not allow an explicit
extraction of a quasi-static term. Instead, an approximate quasi-static
term can be obtained using the two-level DCIM [7]. In this technique,
the slowly-decaying spectral tail of F̃c(kρ) is approximated in terms of
a number of complex exponentials using the GPOF. Then subtracting
and adding these exponentials to the original spectral function F̃c(kρ)
and invoking the Sommerfeld identity [7], two sets of complex images
are obtained. The first set is the approximate quasi-static term which
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accounts for the slowly-decaying behavior of the spectral function. It
dominates in the near-field region; while the second set contributes
mainly in the intermediate-field region.

Alternatively, Abdelmageed [8] reformulated (3) in such a way
that allows the extraction of an explicit closed-form quasi-static term.
Using the approach of [8], we can write (3) as

G(ρ; z | z′) = S
{

1
2

F̃ (kρ) e−jkzo(z+z′)
}

(6)

where
S{·} =

1
4π

∫ ∞

−∞
dkρ {·} H2

1 (kρρ) (7)

Extracting the quasi-static contribution of the spectral function F̃ (kρ),
we get

G(ρ; z | z′) = Fqs S
{

1
2
e−jkzo(z+z′)

}

+S
{

1
2

[
F̃ (kρ) − Fqs

]
e−jkzo(z+z′)

}
(8)

where Fqs = lim
kρ→∞

F̃ (kρ). Making use of the identity [14],

S
{

1
2
e−jkzz

}
=

1
4πρ

(
e−jkz − z

r
e−jkr

)
(9)

then (8) can be expressed as

G(ρ; z | z′) = Gqs + S
{

1
2

[
F̃ (kρ) − Fqs

]
e−jkzo(z+z′)

}
(10)

where

Gqs =
Fqs

4πρ

(
e−jko(z+z′) − (z + z′)

r
e−jkor

)
(11)

and r =
√

ρ2 + (z + z′)2. In [8], the DCIM is used to evaluate the
integral in (10). However, the results are valid in the near- and
intermediate field regions. In this work, we extend the validity of the
DCIM to the far field by extracting the contribution of surface waves.

G(ρ; z | z′) = Gqs + Gsw + S
{
1
2

[
F̃ (kρ)−Fqs−F̃sw

]
e−jkzo(z+z′)

}
(12)
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where Gsw and F̃sw are the spatial- and spectral-domain contributions
due to surface-wave poles. They are given as

Gsw = S
{

1
2

F̃sw(kρ) e−jkzo(z+z′)
}

(13)

F̃sw(kρ) =
Np∑
p=1

2kρpResp

k2
ρ − k2

ρp

ejkzo(z+z′) (14)

Resp = lim
kρ→kρp

(kρ − kρp)
[
e−jkzo(z+z′) F̃ (kρ)

]
(15)

Np is the number of poles, kρp ’s are the surface-wave poles located
in the complex kρ-plane, and Resp’s are their corresponding residues.
Two types of poles are observed in the integral (13):

Surface-wave poles: which are located at kρ = kρp in the complex
kρ-plane in the range {ko, kmax} where kmax is the maximum value
of the wavenumber present in the multilayered medium.

Hankel function singularity at the origin: where H2
1 (kρρ) has a

singularity of type 1/kρ which has a non-vanishing contribution as
kρ → 0. This can be viewed by taking the limit of the integrand

in (13)
[

lim
kρ→0

kρ
2kρpResp

k2
ρ−k2

ρp
H2

1 (kρρ)
]
, and noting that H2

1 (x) → 2j
πx as

x → 0 [15]. Therefore, the integral (13) has a pole at kρ = 0.

To seek the contribution of both types of poles, we either apply
directly Cauchy’s residue theorem or equivalently split F̃sw(kρ) into
two parts:

F̃sw(kρ) =
Np∑
p=1

2Resp

kρp

[
k2

ρ

k2
ρ − k2

ρp

− 1

]
ejkzo(z+z′) (16)

Hence, Gsw can be decomposed into two parts as follows

Gsw = Gsw1 + Gsw2 (17)

where

Gsw1 =
Np∑
p=1

2Resp

kρp

S
{

1
2

[
k2

ρ

k2
ρ − k2

ρp

]}
(18)

Gsw2 = −
Np∑
p=1

2Resp

kρp

S
{

1
2

}
(19)
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Gsw1 has the same contribution due to surface-wave poles as the
integral (13). However, the singularity of the Hankel function at kρ = 0
in (18) has a vanishing contribution:

lim
kρ→0

kρ

k2
ρ

k2
ρ − k2

ρp

H2
1 (kρρ) → 0 (20)

Using Cauchy’s residue theorem, Gsw1 can be evaluated as

Gsw1 = (−2πj)
1
8π

Np∑
p=1

lim
kρ→kρp

(kρ−kρp)
2Resp

kρp

k2
ρ

k2
ρ − k2

ρp

H2
1 (kρρ) (21)

which reduces to

Gsw1 = − j

4

Np∑
p=1

RespH
2
1 (kρpρ) (22)

Gsw2 has the same contribution as the integral (13) has due to the
singularity of the Hankel function at kρ = 0. It can be evaluated using
the identity (9) for z = 0.

Gsw2 = −
Np∑
p=1

2Resp

kρp

1
4πρ

= −
Np∑
p=1

Resp

2πkρpρ
(23)

On substituting for Gsw1 and Gsw2 from (22) and (23), we get

Gsw = − j

4

Np∑
p=1

Resp

(
H2

1 (kρpρ) − j2
πkρpρ

)
(24)

Now, the one-level DCIM can be used to evaluate the integral
in (12). The remainder function

[
F̃ (kρ) − Fqs − F̃sw

]
is approximated

as a set of complex exponentials using the GPOF. By employing the
identity (9), we obtain

G(ρ; z | z′) = Gqs + Gsw +
M∑
l=1

alGl(bl) (25)

where

Gl(bl) =
1

4πρ

(
e−jko(z+z′+bl) − (z + z′ + bl)

rl
e−jkorl

)
(26)
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rl =
√

(z + z′ + bl)2 + ρ2 (27)

al’s and bl’s are the coefficients and exponents of the complex images
determined by the GPOF. On combining (11), (24) and (25), we get

G(ρ; z | z′) =
Fqs

4πρ

(
e−jko(z+z′) − (z + z′)

r
e−jkor

)

− j

4

Np∑
p=1

Resp

(
H2

1 (kρpρ) − j2
πkρpρ

)
+

M∑
l=1

AlGl(bl) (28)

The first term in (28) dominates in the near field, the second term
dominates in the far field and the last term contributes mainly in the
intermediate field region.

To investigate the effect of Gsw2 on the behavior of the surface-
wave term Gsw in the near- and far-field regions, we take the limit
for ρ → 0 and ρ → ∞; respectively. Using the small-argument
approximation for H2

1 (x) → 2j
πx as x → 0, it is evident that Gsw → 0

as ρ → 0. Thus, the surface-wave term is nonsingular at the origin. It
has a negligible influence on the results in the near field as ρ → 0.
This means that it does not suffer the singularity problem which
is encountered in previous works when ρ → 0 in the application
of the DCIM with surface-wave extraction [9, 10]. To conclude, the
new proposed surface-wave term has the advantage of masking the
singularity of the Hankel functions in the near field. In the far field,
the functional behavior of Gsw1 and Gsw2 are different. For large ρ,
Gsw1 behaves as e

−jkρp ρ√
kρpρ

; while Gsw2 behaves as 1
kρpρ . This makes Gsw1

constitutes the main part of the surface-wave term in the far field.

3. NUMERICAL RESULTS

To validate the results of the proposed method, two structures of the
configuration shown in Fig. 1 are examined. For both structures, the
top layer is air and the bottom layer is PEC. The first structure is
a three-layered medium with: h1 = 1.0 mm, εr1 = 12.6, and the
second structure is a four-layered medium with: h1 = 1.5 mm, εr1 = 2,
h2 = 0.75 mm, εr2 = 10. Both the source and field points are assumed
to be located at the interface between air and first layer, i.e., z′ = z = 0.
Plots of the magnitude of the nonsymmetrical component GA

zx are
shown in Figs. 2–4. The results of the numerical integration (NI)
technique are demonstrated for comparison. The quasi-static term (Q-
Static) and the surface-wave term (SWs) are also incorporated in the
plots. It is obvious that our method has an excellent agreement with
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Figure 2. Magnitude of GA
zx in a three-layered medium: Layer 0:

air, layer 1: h1 = 1.0 mm, εr1 = 12.6, layer 2: PEC. z′ = z = 0.
f = 15 GHz.

Figure 3. Magnitude of GA
zx in a three-layered medium: Layer 0:

air, layer 1: h1 = 1.0 mm, εr1 = 12.6, layer 2: PEC. z′ = z = 0.
f = 20 GHz.
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Figure 4. Magnitude of GA
zx in a four-layered medium: Layer 0: air,

layer 1: h1 = 1.5 mm, εr1 = 2, layer 2: h2 = 0.75 mm, εr2 = 10, layer
3: PEC. z′ = z = 0. f = 15 GHz.

Figure 5. Magnitude of GA
zx in a four-layered medium: Layer 0: air,

layer 1: h1 = 1.5 mm, εr1 = 2, layer 2: h2 = 0.75 mm, εr2 = 10, layer
3: PEC. z′ = z = 0. f = 20 GHz.
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the numerical integration technique for all field regions. The quasi-
static term dominates in the near-field region; while the surface-wave
term dominates in the far-field region. As explained in Section 2 and
clearly validated in the figures, the surface-wave term has a negligible
influence on the results in the near-field region.

4. CONCLUSION

A new method based on the application of the DCIM has been
proposed for evaluating the contribution of surface waves for the
nonsymmetrical components of the magnetic vector potential Green’s
function. In all previous works, the surface-wave term is expressed in
terms of Hankel functions. Unfortunately, it has a singularity problem
of Hankel functions at the origin which is known to corrupt the results
of the DCIM in the near field. In our proposed method, the surface-
waves term comprises two parts. The first part is related to the surface-
wave poles and is expressed in terms of Hankel functions. The second
part is related to the Hankel function singularity when kρ = 0 in
the spectral domain. The merit of the second part is to obviate the
singularity of the Hankel functions of first part when ρ = 0. Thus,
the new expression of surface-wave term does not suffer the singularity
problem of Hankel functions at the origin. The results shows that
the surface-wave term has a negligible effect on the calculation of the
near field which is dominated by the quasi-static term. The results
also demonstrates an excellent agreement with the direct numerical
integration technique for all field regions.
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