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Abstract—Fields inside the chiral nihility slab which is backed by
perfect electric conductor are determined. It is noted that both electric
and magnetic fields exist inside the grounded chiral nihility slab when
it is excited by a plane wave. Electric field inside the slab disappears for
excitation due to an electric line source. Magnetic field inside the slab
disappears when geometry changes to corresponding dual geometry.
Dual geometry means chiral nihility slab backed by perfect magnetic
conductor and excited by a magnetic line source. Using fractional curl
operator, fields are determined for fractional order geometries which
may be regarded as intermediate step between the two geometries
which are related through principle of duality. Discussion is extended
for chiral nihility slab which is backed by perfect electromagnetic
conductor (PEMC).

1. INTRODUCTION

Chiral nihility is a special kind of chiral medium, for which the real part
of permittivity and permeability are simultaneously zero or refractive
index become zero at certain frequency known as nihility frequency [1–
3]. In chiral nihility, the two eigenwaves are still circularly polarized but
one of them is a backward wave. For backward waves phase velocity
is antiparallel to the corresponding Poynting vector. Phenomena of
negative refraction occurs when a plane wave enters from vacuum
to chiral nihility medium. That is, when a plane wave obliquely
hits the interface due to vacuum and chiral nihility, one refracted
eigenwave propagates on one side of normal at certain angle while
other eigenwave propagates at same angle on other side of the normal
to the interface. Another interesting phenomena of negative reflection
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of both eigenwaves occurs at the interface between chiral nihility and
perfect electric conductor plane [2]. Due to these two phenomenon,
both electric field and power flow disappear in particular regions of
planer waveguide, composed of chiral nihility slabs backed by perfect
electric conductors, when it is excited by an electric line source [3]. On
the other hand, magnetic field and power flow disappears in particular
regions of planer waveguide, composed of chiral nihility slabs backed
by perfect magnetic conductors, when it is excited by a magnetic line
source.

Our interest is to study behavior of fields inside and outside chiral
nihility slab which is backed by perfect electric conductor. Another
geometry which is dual to the first geometry has also been considered.
Geometry containing chiral nihility slab backed by PEC and excited
by an electric line source and geometry containing chiral nihility slab
backed by PMC and excited by a magnetic line source are dual of each
other. For each geometry uniform plane wave or line source has been
considered as a source of excitation. Difference in behavior of fields
inside grounded chiral nihility slab due to line source excitation and
plane wave excitation is noted.

Discussion is further extended to two general geometries, first
deals with chiral nihility slab backed by fractional dual interface while
other deals with chiral nihility slab backed by perfect electromagnetic
conductor (PEMC). PEC and PMC become special cases of each
general geometry. Field corresponding to fractional or intermediate
geometries between the two dual geometries are studied. Fractional
geometries have been obtained using fractional curl operator [4].

2. GROUNDED CHIRAL NIHILITY SLAB

Consider a slab of chiral nihility metamaterial. The slab is of infinite
length and is backed by perfect electric conductor (PEC). Front face
of the chiral nihility slab is located at z = d1 while perfect electric
conductor is located at location z = d2, where d2 > d1. The chiral
nihility slab backed by PEC has been termed as grounded chiral nihility
slab.

A linearly polarized uniform plane wave, with time dependency
time harmonic exp(−jωt), is obliquely incident on the grounded chiral
nihility slab. The electric and magnetic fields inside and outside the
grounded chiral nihility slab may be written in terms of unknown
coefficients as [5, 6]

E0 = exp(ikyy)
[
x̂ exp (ik0zz) + A−N−

R exp(−ik0zz)

+B−N−
L exp(−ik0zz)

]
, z<d1 (1)
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E1 = exp(ikyy)
[
E+M+

R exp(ik+
z z) + F+M+

L exp(ik−
z z)

+E−M−
Rexp(−ik+

z z)+F−M−
Lexp(−ik−

z z)
]
, d1 <z<d2 (2)

H0 = exp(ikyy)
[

1
k0η0

{ŷk0z exp (ik0zz) − ẑky exp (ik0zz)}

− i

η0

{
A−N−

Rexp(−ik0zz)−B−N−
L exp(−ik0zz)

}]
, z<d1 (3)

H1 = exp(ikyy)
−i

η

[
E+M+

R exp(ik+
z z) − F+M+

L exp(ik−
z z)

+E−M−
R exp(−ik+

z z)−F−M−
L exp(−ik−

z z)
]
, d1 <z<d2 (4)

where

N±
R = x̂ ± ik0z

k0
ŷ − iky

k0
ẑ (5)

N±
L = x̂ ∓ ik0z

k0
ŷ +

iky

k0
ẑ (6)

M±
R = x̂ ± ik+

z

k+
ŷ − iky

k+
ẑ = x̂ ± ik±

z

k± ŷ − iky

k± ẑ (7)

M±
L = x̂ ∓ ik+

z

k+
ŷ +

iky

k+
ẑ = x̂ ∓ ik±

z

k± ŷ +
iky

k± ẑ (8)

Superscript ± in Equations (5)–(8) represents the eigenwaves
propagating in the ±z direction. The subscript R and L refer to the
RCP and LCP eigenwaves satisfying the dispersion relations as

k2
y + (k±

z )2 = (k±)2

where k± = ±ωκ at the nihility frequency. In above equations,
k0 = ω

√
µ0ε0, η0 =

√
µ0/ε0, and η =

√
µ/ε. k0z and ky satisfy the

dispersion relation

k2
y + k2

0z = k2
0

It may be noted that relation k+
z = −k−

z holds for all modes
propagating inside the slab.

Unknown coefficients in field expressions (1)–(4) may be obtained
using the boundary conditions. At z = d2, tangential components of
electric field E1 must be zero. Application of boundary condition to x
and y components of electric field at z = d2 and imposing restriction
k+

z = −k−
z yields

E± = −F∓ (9)
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Tangential components of electric and magnetic fields across the
dielectric interface located at z = d1 must be continues. Continuity of
x-components and y-components of electric field yields

E− =
exp (ik0zd1 + ik+

z d1)
2Rf

(10)

E+ = −exp (ik0zd1 − ik+
z d1)

2Rf
(11)

where

Rf =
k0η0k

+
z

k+ηk0z

Substitution of unknowns coefficients in expressions (2) and (4) yields
electric and magnetic fields inside the slab. On the other, if we excite
the grounded slab by a electric line source, it can be shown that electric
field inside the slab disappears. That is

∫ ∞

−∞
E1(ky)dky = 0 (12)

Using duality principle, it can be shown that chiral nihility slab backed
by PMC does not contain magnetic field at nihility frequency when it
is excited by a magnetic line source. That is

∫ ∞

−∞
H1(ky)dky = 0

In both geometries, for line source excitation, there is no power inside
the grounded chiral nihility slab.

Fractionalization of a given ordinary operators may be used to
explore the intermediate geometries between the two given geometries.
The two given geometries must be connected through the given
ordinary operator. Frac-tional curl operator has been used to study
various problems [7–16]. A linear operator may be fractionalized using
recipe given in [4], which dictates that fractionalization of an operator
means fractionalization of its eigenvalues. Our interest is to note the
behavior of electric and magnetic fields inside the chiral nihility slab
for different values of the order of curl operator. In other words, our
interest is to see how fields in a geometry changes to fields in the dual
geometry.
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3. CHIRAL NIHILITY SLAB BACKED BY
FRACTIONAL DUAL INTERFACE

Using the concept of fractional curl operator (∇×)α [4], we can write
Maxwell equations for time harmonic fields as

(k̂i×)E0fd = (η0H0fd) (13)

(k̂i×)(η0H0fd) = −E0fd (14)

(k̂±
i ×)E1fd = (ηH1fd) (15)

(k̂±
i ×)(ηH1fd) = −E1fd (16)

Subscript fd stands for fractional dual. Fractional dual fields for region
inside and outside the slab may be obtained as

E0fd = (k̂i×)αη0H0

η0H0fd = (k̂i×)αE0

E1fd = (k̂±
i ×)αηH1

ηHfd = (k̂±
i ×)αE1

and these fields must satisfy the Maxwell equations.
In order to deal with above equations, eigenvalues and eigenvector

of operators (k̂i×) and (k̂±
i ×) are required. So first we calculate the

eigenvalues and eigenvectors of these cross product operators.
Eigenvalues and eigenvectors of operator k̂1× =

(
ky ŷ+k0z ẑ

k0

)
×

A11 =
1√
2

[
x̂ + i

k0z

k0
ŷ − i

ky

k0
ẑ

]
= N+

R, a11 = −i

A12 =
1√
2

[
x̂ − i

k0z

k0
ŷ + i

ky

k0
ẑ

]
= N+

L , a12 = +i

A13 = i
ky

k0
ŷ + i

k0z

k0
ẑ, a13 = 0

Eigenvalues and eigenvectors of operator k̂2× =
(

ky ŷ−k0z ẑ
k0

)
× are

A21 =
1√
2

[
x̂ + i

k0z

k0
ŷ + i

ky

k0
ẑ

]
= N−

R, a21 = +i

A22 =
1√
2

[
x̂ − i

k0z

k0
ŷ − i

ky

k0
ẑ

]
= N−

L , a22 = −i

A23 = i
ky

k0
ŷ − i

k0z

k0
ẑ, a23 = 0
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Similarly eigenvalues and eigenvectors of operator k̂+
1 × =

(
ky ŷ+k+

z ẑ
k0

)
×

A+
11 =

1√
2

[
x̂ + i

k+
z

k+
ŷ − i

ky

k+
ẑ

]
= M+

R, a+
11 = −i

A+
12 =

1√
2

[
x̂ − i

k+
z

k+
ŷ + i

ky

k+
ẑ

]
= M−

L , a+
12 = +i

A+
13 = i

ky

k+
ŷ + i

k+
z

k+
ẑ, a+

13 = 0

Eigenvalues and eigenvector of operator k̂+
2 × =

(
ky ŷ−k+

z ẑ
k0

)
× are

A+
21 =

1√
2

[
x̂ + i

k+
z

k+
ŷ + i

ky

k+
ẑ

]
= M−

L , a+
21 = i

A+
22 =

1√
2

[
x̂ − i

k+
z

k+
ŷ − i

ky

k+
ẑ

]
= M+

R, a+
22 = −i

A+
23 = i

ky

k+
ŷ − i

k+
z

k+
ẑ, a+

23 = 0

Fractional dual fields are obtained by fractionalizing the
eigenvalues of corresponding linear operator as given below

E0fd = exp(ikyy)
[
(−i)α 1√

2
A11 + (+i)α 1√

2
A12

]
exp (ik0zz)

+
[
(−i)αA−N−

R + (i)αB−N−
L

]
exp(ikyy − ik0zz)

E1fd = exp(ikyy)
[
(−i)αE+M+

R exp(ik+
z z) + (i)αF+M+

L exp(ik−
z z)

+(−i)αE−M−
R exp(−ik+

z z) + (i)αF−M−
L exp(−ik−

z z)
]

η0H0fd = exp(ikyy)
[
(−i)α+1 1√

2
A11 + (+i)α+1 1√

2
A12

]
exp (ik0zz)

[
+(−i)α+1A−N−

R + (i)α+1B−N−
L

]
exp(ikyy − ik0zz)

ηH1fd = exp(ikyy)
[
(−i)α+1E+M+

Rexp(ik+
z z)+(i)α+1F+M+

L exp(ik−
z z)

+(−i)α+1E−M−
R exp(−ik+

z z) + (i)α+1F−M−
L exp(−ik−

z z)
]

Expressing k−
z as (−k+

z ), above equations yields the following

E0fd =
[
cos

(απ

2

)
x̂ +

k0z

k0
sin

(απ

2

)
ŷ

−ky

k0
sin

(απ

2

)
ẑ

]
exp(ikyy + ik0zz)
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−1
2

[
x̂2 cos

(απ

2

)
− ŷ2

k0z

k0
sin

(απ

2

)

−ẑ2
ky

k0
sin

(απ

2

)]
exp(ikyy − ik0z(z − 2d1)) (17)

E1fd = E+

[
−2i sin

(απ

2

)
x̂ − 2

k+
z

k+
sin

(απ

2

)
ŷ

−2i
ky

k+
cos

(απ

2

)
ẑ

]
exp(ikyy + ik+

z z)

+E−
[
−2i sin

(απ

2

)
x̂ − 2

k+
z

k+
sin

(απ

2

)
ŷ

−2i
ky

k+
cos

(απ

2

)
ẑ

]
exp(ikyy − ik+

z z) (18)

η0H0fd =
[
cos

(
(α + 1)π

2

)
x̂ +

k0z

k0
sin

(
(α + 1)π

2

)
ŷ

−ky

k0
sin

(
(α + 1)π

2

)
ẑ

]
exp(ikyy + ik0zz)

−1
2

[
x̂2 cos

(
(α + 1)π

2

)
− ŷ2

k0z

k0
sin

(
(α + 1)π

2

)

−ẑ2
ky

k0
sin

(
(α + 1)π

2

)]
exp(ikyy − ik0z(z − 2d1)) (19)

η0H1fd = E+

[
−2i sin

(
(α + 1)π

2

)
x̂ − 2

k+
z

k+
sin

(
(α + 1)π

2

)
ŷ

− 2i
ky

k+
cos

(
(α + 1)π

2

)
ẑ

]
exp(ikyy + ik+

z z)

+E−
[
−2i sin

(
(α + 1)π

2

)
x̂ − 2

k+
z

k+
sin

(
(α + 1)π

2

)
ŷ

− 2i
ky

k+
cos

(
(α + 1)π

2

)
ẑ

]
exp(ikyy − ik+

z z) (20)

Changing values of α between zero and one, we can find behavior of
fields inside intermediate geometries. α = 0 and α = 1 reproduces
the PEC and PMC cases respectively. In next section Chiral nihility
slab backed by PEMC characterized by admittance parameter M is
considered. Mη → ±∞ and Mη → 0 reproduce PEC and PMC cases
respectively.



388 Naqvi

4. CHIRAL NIHILITY SLAB BACKED BY PEMC

Here it assumed that slab of chiral nihility metamaterial is backed by
perfect electromagnetic conductor (PEMC). PEMC is generalization of
PEC and PMC and has been introduced by Lindell and Sihvola [17].
Chiral material and PEMC has been studied by many authors [18–
27]. Fields given in Equations (1)–(4) can be assumed in regions inside
and outside the slab. Unknown coefficients in field expressions (1)–(4)
may be obtained using the related boundary conditions. At z = d2,
tangential components of field quantity (ME1 +H1) must be zero [17].
Application of boundary condition to x and y components of electric
field yields

E± = −
(

Mη + i

Mη − i

)
F∓ (21)

Tangential components of electric and magnetic fields across the
dielectric interface located at z = d1 must be continues. Continuity of
x-components and y-components of electric field yields

exp(ik0zd1) + (A− + B−) exp(−ik0zd1)

=
(

2i

Mη + i

) [
E+ exp(ik+

z d1) + E− exp(−ik+
z d1)

]

(−A− + B−) exp(−ik0zd1)

=
k+

z k0

k+k0z

(
2i

Mη + i

) [
E+ exp(ik+

z d1) − E− exp(−ik+
z d1)

]

Continuity of x-components and y-components of magnetic field
yields

(A− − B−) exp(−ik0zd1)

=
η0

η

(
2Mη

Mη + i

) [
E+ exp(ik+

z d1) + E− exp(−ik+
z d1)

]

exp(ik0zd1) − (A− + B−) exp(−ik0zd1)

=
(

2Mη

Mη + i

)
Rf

[
E+ exp(ik+

z d1) − E− exp(−ik+
z d1)

]

Solving above four equations simultaneously yields the unknown
coefficients

E− = −E+

(
η22iRf + η2

02Mη

−η22iRf + η2
02Mη

)
exp(2ik+

z d1) (22)
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E+ =
2 exp(ik0zd1 − ik+

z d1)
P − QL

(23)

where

P =
2i + 2MηRf

Mη + i

Q =
(

η22iRf + η2
02Mη

−η22iRf + η2
02Mη

)

L =
2i − 2MηRf

Mη + i

It may be noted that under the limit Mη → ±∞, results derived in this
section reduces to results derived in previous section for chiral nihility
slab backed by PEC.

5. CONCLUSIONS

Both electric and magnetic fields exist inside the grounded chiral
nihility slab when it is excited by a plane wave. Electric field inside
the grounded chiral nihility slab disappears for excitation due to
an electric line source. Magnetic field inside the slab disappears
when geometry changes to corresponding dual geometry. Using
fractional curl operator, fields are determined for geometries which
may be regarded as intermediate step between the two dual geometries.
Neither electric fields nor magnetic field disappears for fractional
geometries either for plane wave or line source excitation. Using
concept of fractional geometries, one can select appropriate geometry
required regarding distribution of field and power inside the nihility
slab.
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