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Abstract—The critical-points method is adopted for measuring
unloaded Q-factor of microwave resonators in the presence of phase
shift caused by the feed line. The result is calculated from four
frequencies of three points in the resonator’s impedance trace. In
fact, the resonator’s impedance trace rotates in Smith Chart by the
phase shift. If Q-factor were gotten directly from the measured
impedance including feed line rather than the equivalent impedance
of the resonator without feed line, the performance of measurement
will be impaired. To de-embed the phase shift, objective function was
introduced to find the proper rotation angle caused by the feed line
instead of calibration using extra measurement. Another advantage
of the proposed method lies in the fact that no special attention is
needed to distinguish magnetic coupling and electric coupling. The
effectiveness of the proposed method was demonstrated by one set
of simulation data and two measurement examples, namely, a low Q
dielectric resonator and a high Q hollow cylindrical cavity.

1. INTRODUCTION

Loaded Q-factor QL and unloaded Q-factor Q0 are important
parameters of microwave resonator. One resonator may have different
QL if an external circuit or coupling coefficient is variable. On the
contrary, the Q0 is unique for one mode. And Q0 is needed when
determining material’s loss tangent or upper limits for the overall
resonator performance [1].

Q-factor can be measured with one-port reflection method or
two-port transmission method. The reflection method is adopted in
most of publications, due to large errors caused by the inequality of
input and output coupling coefficients and the complex structure in
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the transmission method [2]. When the reflection method is adopted,
measurement using vector data, which have more information, is
considered to be more accurate than using scalar data [3, 4].

Among those methods, the critical-points method introduced by
Sun and Chao is fast and accurate [5]. And this method was further
referenced and extended by lots of people [6, 7]. It is based on simple
closed-form expressions and is free from curve fitting to measurement
data. In this method, resonator is represented as a parallel or series
equivalent circuit, and the coupling circuit has loss and energy storage.
Q0 is calculated from four frequencies of three points, that is, one
detuned crossover point and two critical points of imaginary part of
the impedance.

In fact, the input impedance measured by vector network analyzer
(VNA) not only is the equivalent impedance of a resonator and
coupling circuit, but also includes phase shift due to feed line, because
the VNA is calibrated at the measurement point instead of the coupling
point. So the measurement impedance trace in Smith chart has the
same shape as the equivalent impedance, but not in the same position.
It is rotated from the equivalent impedance trace. The phase shift will
cause large errors if the measured impedance were directly used in the
critical-points method. Lye solved this problem by two feed lines with
difference length to de-embed the phase shift [7].

In this paper, an objective function is introduced to find the
proper phase shift without extra complex measurement. The argument
of the objective function is the phase shift which is the rotation
angle of impedance trace in Smith chart. If the objective function
reaches zero, the rotation angle is actually the phase shift which is
used to de-embed the feed line. And this method does not need to
distinguish magnetic coupling and electric coupling as [5], because
these two kinds of coupling can change into each other with an extra
one-quarter-wavelength transmission line and this line can be unified
into the rotation angle mentioned above. To evaluate the performance
of the proposed method, results calculated from simulation data and
measurement data of two types of resonators, namely, a low Q dielectric
resonator and a high Q hollow cylindrical cavity, are presented.

2. EQUIVALENT-CIRCUIT MODEL

The equivalent circuit of a microwave resonator including the feed
line can be shown in Fig. 1 [7]. In this circuit, the external source
and resistance are denoted by vs and Rs respectively. The coupling
mechanism is characterized by Re + jXe, where Re and Xe represent
the loss and energy storage in the coupling, respectively. The value of
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Xe is positive (2πfLe) or negative (−1/2πfCe) depending on whether
the coupling is inductive or capacitive. The unloaded resonator is
represented by a parallel resonant circuit, which is made up of R0, C0,
and L0. The feed line has a phase shift of θ/2 and a characteristic
impedance of Z0. Typically, Z0 = Rs = 50 Ω.

Figure 1. General equivalent circuit of microwave resonator including
the feed line.

The input impedance at plane 2-2 is shown as following:
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Figure 2. Equivalent impedance trace.
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In Fig. 2, the frequencies of the maximum and the minimum of
the imaginary part of Ze are marked as f1 and f2. And the frequencies
of detuned crossover point are indicated as f3 and f4. The unloaded
resonant frequency f0 and unloaded Q-factor Q0 can be calculated from
f1 ∼ f4 using the critical-points method [5]:

f0 = (f1 + f2)/2 (2)
Q0 = |x| f0/|f1 − f2| ≈ f0/|f1 − f2| (3)

where

x2 =
b − 2a − 1 +

√
(b − 2a − 1)2 − 4(b + a)(a − 1)

2(b + a)
(4)

a = 1 +
f2
1 + f2

2 + 2f1f2 − 4f3f4

2(f1f3 + f1f4 + f2f3 + f2f4 + 4f3f4)
(5)
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δ4D4 − δ3D3

δ2 − δ1

)2

(6)

Dk = (1 + δk/2) / (1 + δk) , δk = (fk − f0) /f0, k = 1 ∼ 4 (7)

Actually, the impedance measured by VNA is Zi at plane 1-1,
rather than Ze at plane 2-2. Due to the presence of feed line, Zi is
rotated from Ze in Smith Chart by θ = 4πfl/v, where l is the length
of the feed line, and v is the speed of wave. For a high Q resonator, the
measurement frequency range is narrowband. So f is approximately a
constant. And θ is only dependent on l. In the critical-points method,
the impedance trace, which is used to calculate f0 and Q0, is Ze rather
than Zi. Therefore θ should firstly be obtained after the measurement
of Zi. Then Ze is deduced from Zi and θ by transmission line theory.
And finally, f0 and Q0 are calculated by (2)–(7) from Ze. It will be
shown in the next section that there will be large errors in f0 and Q0

if they were directly calculated from Zi instead of Ze. The equation of
deducing Ze from Zi is:

Ze = Z0
Zi − jZ0 tan (θ/2)
Z0 + jZi tan (θ/2)

(8)

If θ is the proper rotation angle in Smith chart, Ze calculated
from (8) is the impedance at plane 2-2. The real parts of Ze of the
detuned crossover point are equal. Therefore we get

Re +
R0

1 + (2Q0δ3D3)2
= Re +

R0

1 + (2Q0δ4D4)2
(9)
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resulting in
J(θ) = δ3D3 + δ4D4 = 0 (10)

substitute (2) and (7) into (10), we get

J(θ) =
f3

f1 + f2
− f1 + f2

4f3
+

f4

f1 + f2
− f1 + f2

4f4
= 0 (11)

There are two reasons that (11) can be used as an objective
function to find the rotation angle caused by feed line. Firstly, (9)
is derived from (1) which is an expression of Ze rather than Zi. And
the expression of Zi which includes the feed line is different from Ze.
Even though the two impedances at the crossover point of Zi are equal,
the expressions of the real parts of them are not (9). Therefore (11)
can not be satisfied. Secondly, the critical points of the imaginary part
of the impedance in Smith Chart vary with the rotation angle. At
the same time, f1 and f2 change according to the critical points. If
the wrong rotation angle were chosen, (11) will not be zero, despite f3

and f4 remain the same. An expression of the imaginary part at the
crossover point is not recommended to be used as an objective function
because of the complex form and ambiguity. The procedure of finding
the rotation angle θ is:

1. let the rotation angle θ vary throughout a period, such as from
−180◦ to 180◦;

2. calculate the potential Ze with Zi and θ by (8);
3. find four frequencies f1 ∼ f4 of one detuned crossover point and

two critical points in the potential Ze trace calculated in step 2
according to different θ;

4. calculate objective function J(θ) with f1 ∼ f4 found in step 3
by (11);

5. determine θ by J(θ) when it reaches zero.

3. SIMULATION RESULTS

One set of simulation data is used to verify the proposed method. In
Fig. 1, let R0 = 10 Ω, C0 = 1.5915 nF, L0 = 0.15915 pH, Re = 10 Ω,
Le = 7.8585 pH, and θ = 0◦. Then Q0 = 1000 and f0 = 10 GHz
theoretically. Ze is gotten using this set of parameters near the
resonant frequency by (1). In this case, Zi = Ze, because θ = 0◦.
The objective function J(θ) is calculated using the data of rotated
Zi in Smith Chart with the assumption that θ is unknown. And the
rotation angle varies from −180◦ to 180◦. In Fig. 3, the objective
function J(θ) versus the rotation angle θ is shown. And J(θ) equals
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zero at 0◦ as expected. It means J(θ) can be used to determine the
proper angle that Ze rotates from Zi in Smith Chart. It is also seen
that J(θ) has another zero. Fortunately, this unwanted zero can be
easily distinguished from the proper one by the trend of the curve.
f0 and Q0 are also calculated versus θ, as shown in Fig. 4. The two
curves both reach their theoretical values at 0◦, namely 10 GHz and
1000 respectively. The slope of J(θ) is very small near 0◦. Thus it will
cause big errors when the rotation angle being determined. However it
does not distort the precision of f0 and Q0, because the slopes of them
are also very small near 0◦.

Figure 3. Objective function
J(θ) of simulation data.

Figure 4. Resonant frequency and
unloaded Q-factor versus rotation
angle of simulation data.

Figure 5. Measurement Zi of the dielectric resonator in Smith Chart.
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4. EXPERIMENTAL RESULTS

To illustrate the above principle and procedure in Section 2, f0 and Q0

of two resonators, a dielectric resonator and a high Q hollow cylindrical
cavity, were measured. The input impedances of the two resonators
were measured by Agilent VNA E8363B. In the case of dielectric
resonator, the measurement input impedance is shown in Fig. 5. And
the objective function versus the rotation angle is calculated using the
procedure from step 1 to 4 given in Section 2. In Fig. 6, the objective
function reaches zero when rotation angle equals −55◦. That means the
wanted rotation angle caused by the feed line is −55◦. And the proper
Ze is gotten from Zi by (8), where θ = −55◦. Thus, f0 = 6.5021 GHz
and Q0 = 1492 are estimated from (2)∼ (7) with the proper Ze. f0 and

Figure 6. Objective function
versus rotation angle of the
dielectric resonator.

Figure 7. Resonant frequency and
unloaded Q-factor versus rotation
angle of the dielectric resonator.

Figure 8. Measurement Zi of the cylindrical cavity in Smith Chart.
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Q0 versus the potential rotation angle are shown in Fig. 7. Figs. 8–10
show the measured and calculated curves of a high Q hollow cylindrical
cavity, which further demonstrate the performance of the proposed
method. In this example, the wanted rotation angle is −42◦. And,
f0 = 10.2377 GHz and Q0 = 16915. The curves of f0 and Q0 versus
the potential rotation angle of the two resonators are similar to the
curves in theory as shown in Fig. 4. It can be seen from the curves
that if a wrong rotation angle were chosen or no rotation angle were
used at all, there would be large errors in the results of f0 and Q0.

Figure 9. Objective function
versus rotation angle of the
cylindrical cavity.

Figure 10. Resonant frequency and
unloaded Q-factor versus rotation
angle of the cylindrical cavity.

5. CONCLUSION

A practical method has been presented for de-embedding feed-line
phase shift in the measurement of unloaded Q-factor by the critical-
points method. In this method, an objective function is introduced to
find the proper rotation angle caused by the feed line which impairs
the performance of measurement. Another advantage of the proposed
method lies in the fact that no special attention is needed to distinguish
magnetic coupling and electric coupling. The reason is that the two
kinds of coupling change into each other with an extra one-quarter-
wavelength transmission line. And the transmission line can be unified
to the rotation angle found by objective function. One set of simulation
data and two experimental examples of a low Q dielectric resonator and
a high Q hollow cylindrical cavity were given, which demonstrated the
performance of the proposed method.
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