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Abstract—In our previous works, we have presented one differential
method for the efficient calculation of the modal scattering matrix of
junctions in rectangular waveguides. The formalism proposed relies
on the Maxwell’s equations under their covariant form written in a
nonorthogonal coordinate system fitted to the structure under study.
On the basis of a change of variables, we show in this paper that the
curvilinear method and the generalized telegraphist’s method lead to
the same system of coupled differential equations.

1. INTRODUCTION

Rectangular waveguide junctions are widely used in the design
of microwave components, such as curved waveguides, tapers,
multiplexers, power dividers and filters for modern radar and satellite
communications systems. A variety of analytical and numerical
approaches have been developed for analyzing the discontinuities in
rectangular waveguides [1–22].

In our previous works [1–4], we have presented a differential
method for the efficient calculation of the scattering matrix of
waveguide with varying cross-section. The microwave structures
under consideration are H-plane and E-plane junctions in rectangular
waveguides. An H-plane junction excited by the fundamental mode
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generates higher Transverse Electric modes in the input/output
rectangular waveguides. In an E-plane discontinuity, the Longitudinal
Section Electric modes are generated [9]. The generalized modal
scattering matrix relates the amplitudes of outgoing modes to those
of incoming modes.

The method proposed in references [1–3] for computing the
generalized S-matrix lies on Maxwell’s equations written in a non-
orthogonal coordinates system and leads to a differential system
having non-constant coefficients. This system represents an initial
value problem and we show that the implementation requires several
numerical integrations. During these integrations, unwanted solutions
appear which can be important to consider with the true ones. It is
essential to overcome this problem. For this, the junction is represented
by several elementary transitions in series. The combination of
elementary S-matrices by an iteration process [4] gives the overall
multimodal scattering matrix of the junction under consideration.
We show that this process ensures the stability of results. We have
used this method to define the generalized scattering matrices of
step discontinuities [1, 2], adapted sectoral horns [1, 2], broad-band
resonator iris filters [3], power dividers and waveguide bends [4] and
we have assessed simulation by comparison with published numerical
and experimental results [1–4].

In the present paper, we compare the curvilinear coordinate
formalism with the generalized Telegraphist’s equation method in the
case of an H-plane discontinuity but the analysis we will present can
be applied to E-plane discontinuities. Section 2 describes essential
steps of the curvilinear coordinate method. In Section 3, we present
the generalized Telegraphist’s equation method. The curvilinear
coordinate method and the Telegraphist’s method represent two
different mathematical approaches. In this paper, we show on the basis
of a change of variables that these methods lead to the same system
of coupled differential equations and that from a theoretical point of
view, they are equivalent.

2. CURVILINEAR COORDINATE METHOD

2.1. Geometry of H-plane Junctions

The H-plane junction under study is depicted in Fig. 1. This junction
is connected to rectangular waveguides and can be a taper or a filter.
l is the length of the transition. The cross-section of input and output
waveguides are a(i)×b and a(o)×b, where (i) and (o) denote quantities
relative to input and output waveguides. Functions x = f1(z) and
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x = a(i) + f2(z) represent the perfectly conducting walls.
It is assumed that the dominant mode TE10 is incident upon the

junction (1). The time factor in exp(jωt) is omitted. ω denotes the
angular frequency, k = 2π

λ the wavenumber and λ the wavelength.

E(i)
y (x, z) = E

(i)
0y sin

( πx
a(i)

)
exp (−jγ1z)

H(i)
x (x, z) = H

(i)
0x sin

( πx
a(i)

)
exp (−jγ1z)

H(i)
z (x, z) = H

(i)
0z cos

( πx
a(i)

)
exp (−jγ1z)

E(i)
x = E(i)

z = H(i)
y = 0

(1)

where

γ1 =

√
k2 − π2

a(i)2
(2)

For the junction under study, the y dimension undergoes no variation.
So, the field dependence according to this variable is perfectly defined
when we know the incident wave. In the case of H-plane polarization,
the incident field does not depend on the y variable. Hence,

∂

∂y
= 0 (3)

2.2. Covariant Formalism of Maxwell’s Equations

If there is no current density and no charge density, for a homogeneous
and isotropic medium with permittivity ε0 and permeability µ0,
the Maxwell-Faraday’s equation and the Maxwell-Ampere’s equation
associated with the constitutive relations are expressed in a curvilinear
coordinate system

(
x1, x2, x3

)
[22, 23] as follows:



∂Ek

∂xj
− ∂Ej

∂xk
= −jkZ√g

3∑
j=1

gijHj

∂ZHk

∂xj
− ∂ZHj

∂xk
= jk

√
g

3∑
j=1

gijEj

;

(i, j, k) = (1, 2, 3); (2, 3, 1); (3, 1, 2)

(4)
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Figure 1. H-plane junction in rectangular waveguide. The incident
electric field is parallel to the Oy axis. The incident magnetic field is in
the plane xOz. Waveguide size with respect to the Oy axis is constant.
The cross-section in input is: S(i) = a(i) × b, in output: S(o) = a(o) × b.
l is the length of the junction.

where Ei and Hi are the covariant components of �E and �H. g is
the determinant of matrix tensor and gij , the contravariant metrical
coefficients [23]. Z is the intrinsic impedance of free space:

Z =
√
µ0/ε0 ≈ 120π. (5)

2.3. Coordinate System – Matrix Tensor

The coordinate system (u, v, w) fitted to the junction geometry
is obtained from the Cartesian system (x, y, z) by the following
transformation:

u = a(i) x− f1(z)
a(i) + f2(z) − f1(z)

v = y w = z

(6)

In this new coordinate system, the perfectly conducting walls coincide
with the following coordinate surfaces.

x = f1(z) = f1(w) ⇔ u = 0

x = a(i) + f2(z) = a(i) + f2(w) ⇔ u = a(i)
(7)
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The change from Cartesian components (Vx, Vy, Vz) of vector
⇀

V to
covariant components (Vu, Vv, Vw) is given by(

Vu

Vv

Vw

)
= A

(
Vx

Vy

Vz

)
(8)

where A denotes the Jacobian transformation matrix

A =




∂x

∂u

∂y

∂u

∂z

∂u
∂x

∂v

∂y

∂v

∂z

∂v
∂x

∂w

∂y

∂w

∂z

∂w


 =




f21(w)
a(i)

0 0

0 1 0

u
f ′21(w)
a(i)

+ f ′1(w) 0 1


 (9)

f21(w) = f21(z) = a(i) + f2(z) − f1(z),

f ′21(w) =
df21(z)
dz

= f ′2(z) − f ′1(z)
(10)

The change from covariant components (Vu, Vv, Vw) to contravariant
components (V u, V v, V w) is obtained by the matrix tensor G [2, 23]
with: (

Vu

Vv

Vw

)
= G

(
V u

V v

V w

)
(11)

The matrix tensor G is defined as follows:

G = AGCAt =

(
guu guv guw

gvu gvv gvw

gwu gwv gww

)
(12)

where GC is the matrix tensor associated with the Cartesian system
(identity matrix, [23]). At denotes the adjoint matrix of A.
Considering the expressions of A and At, we can write:

G =




(
f21(w)
a(i)

)2

0
f21(w)
a(i)

(
uf ′21(w)
a(i)

+ f ′1(w)
)

0 1 0
f21(w)
a(i)

(
uf ′21(w)
a(i)

+ f ′1(w)
)

0
(
uf ′21(w)
a(i)

+ f ′1(w)
)2

+ 1




(13)
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and

G−1=

(
guu guv guw

gvu gvv gvw

gwu gwv gww

)

=




(
uf ′21(w)+a(i)f ′1(w)

)2
+a(i)2

f21(w)2
0 −uf

′
21(w) + a(i)f ′1(w)

f21(w)
0 1 0

−uf
′
21(w) + a(i)f ′1(w)

f21(w)
0 1


(14)

The determinant g is a strictly positive w-function.

g = det(G) =
(
f21(w)
a(i)

)2

(15)

2.4. Continuity of Fields

From Equations (8) and (9), we can make several observations:

- Covariant component Vv is equal to Cartesian component Vy.
- Component Vu is proportional to Cartesian component Vx.
- Component Vw is tangential to perfectly conducting walls u = 0

and u = a(i).

Moreover, in accordance with the Jacobian transformation matrix,
continuity relations in planes z = w = 0 and z = w = l between
covariant components and Cartesian ones are given as follows:

At z = w = 0 with u = x,

V (i)
x (x, z) = Vu(u,w)

V (i)
y (x, z) = Vv(u,w)

(16)

At z = w = l with u = a(i) (x− f1(l)) /a(o),

V (o)
x (x, z) =

a(i)

a(o)
Vu(u,w)

V (o)
y (x, z) = Vv(u,w)

(17)
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2.5. Fields Components inside the Junction

As a result of (3), we show that the covariant components Ev and Hv

are non-coupled (18).

∂

∂u

(√
g

(
guu∂Ψ

∂u
+ guw ∂Ψ

∂w

))

+
∂

∂w

(√
g

(
gwu∂Ψ

∂u
+ gww ∂Ψ

∂w

))
+

√
gk2Ψ = 0 (18)

where Ψ = Ev or Ψ = Hv. Furthermore, we show that components
Eu, Hu, Ew and Hw can be expressed in terms of components Ev and
Hv only (19). From the knowledge of Ev and Hv, the four other
components can be deduced.

ZHu =
1
k2

(
−jk√ggww ∂Ev

∂w
− jk√ggwu∂Ev

∂u

)

ZHw =
1
k2

(
jk

√
ggwu∂Ev

∂w
+ jk

√
gguu∂Ev

∂u

)

Eu =
1
k2

(
jk

√
ggww ∂ZHv

∂w
+ jk

√
ggwu∂ZHv

∂u

)

Ew =
1
k2

(
−jk√ggwu∂ZHv

∂w
− jk√gguu∂ZHv

∂u

)
(19)

So, if the incident field coming from the rectangular guide possesses
only a single component in the y direction, the second component will
not be generated. The dominant mode TE10 does not have the y
magnetic component. From (8), (18) and (19), we can then deduce:

Hv = Eu = Ew = 0 (20)

and from (18) et (19), we show that the transverse components Ev and
Hu verify differential system (21).



∂Ev

∂w
= D(u,w)

∂Ev

∂u
+ jkC(w)ZHu

∂Hu

∂w
=
∂Hw

∂u
+

jk

ZC(w)
Ev

Hw =
j

kZ
C(w)

∂Ev

∂u
+D(u,w)Hu

(21)



60 Dusséaux and Faure

where

D(u,w) = − g
wu

gww
=
uf ′21(w) + a(i)f ′1(w)

f21(w)
(22)

C(w) =
a(i)

f21(w)
(23)

2.6. Fields Components inside the Rectangular Waveguides

An H-plane junction that is excited by the mode TE10 only generates
three covariant components Ev, Hu and Hw. A similar result is
obtained if the incident mode is of the type TEn0. Therefore, the
reflected and transmitted fields in rectangular waveguides are given by
linear combinations of independent modes TEn0.

E(g)
ny (x, z) =

(
W (g+)

n exp
(
−jγ(g)

n z
)
+W (g−)

n exp
(
+jγ(g)

n z
))

sin
(nπx
a(g)

)
H(g)

nx (x, z) =
(
Y (g+)

n exp
(
−jγ(g)

n z
)

+ Y (g−)
n exp

(
+jγ(g)

n z
))

sin
(nπx
a(g)

)
(24)

H(g)
nz (x, z) = j

nπ

kZa(g)

(
W (g+)

n exp
(
−jγ(g)

n z
)

+W (g−)
n exp

(
+jγ(g)

n z
))

cos
(nπx
a(g)

)
(25)

E(g)
nx = E(g)

nz = H(g)
ny = 0 (26)

Superscripts (+) and (−) denotes a wave moving in directions +z and
−z, respectively. The propagation constant γ(g)

n defines the nature of
the mode: a propagating mode if γ(g)

n is real, an evanescent mode if
γ

(g)
n is imaginary.

γ(g)
n =

(
k2 −

( nπ
a(g)

)2
)1/2

where Imag
(
γ(g)

n

)
≤ 0 (27)

The amplitudes W (g±)
n and Y (g±)

n are linked by the impedance Z(g)
n of

the TEn0 mode:

Y (g±)
n = ∓W

(g±)
n

Z
(g)
n

(28)

Z(g)
n =

kZ

γ
(g)
n

(29)



Progress In Electromagnetics Research, PIER 88, 2008 61

The normalized complex amplitudes (A(g)
n ;B(g)

n ) [1] are defined as
follows:

A(g)
n =

W
(g+)
n√
Z

(g)
n

exp
(
−jγ(g)

n z
)

B(g)
n =

W
(g−)
n√
Z

(g)
n

exp
(
+jγ(g)

n z
) (30)

Amplitude A
(g)
n is associated with a wave moving in direction

+z, B(g)
n in direction −z, respectively (Fig. 1). The dimension

of the normalized complex amplitudes is a square root of a
power. The multimodal scattering matrix relates the normalized
complex amplitudes

(
A

(i)
n ;B(o)

n

)
of incoming modes to the amplitudes(

B
(i)
n ;A(o)

n

)
of outgoing modes.

Hu(a
(i),w) 

-Hu(0,w) 

Hu(0,w) 

hu(u,w) Hu(u,w)

u

Figure 2. Periodic function hu(u,w) and local function Hu(u,w).
hu(u,w) is obtained by an even analytical extension of the local
function Hu(u,w) on [−a(i), 0]. Function hu(u,w) is periodic with
period 2a(i).

2.7. Boundary Conditions on Perfectly Conducting Walls
and Expansion in Fourier’s Series

The electric component Ev(u,w) is parallel to horizontal perfectly
conducting walls. So, Ev(u,w) checks a Dirichlet’s condition in u = 0
and u = a(i). So, Ev(u,w) is expanded in a sine series as follows:

ev(u,w) =
+∞∑
n=1

Vn(w) sin(αnu) (31)
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where

αn =
nπ

a(i)
(32)

The restriction of Fourier series ev(u,w) on [0; a(i)] expresses the
distribution of Ev(u,w) on the same closed interval.

Ev(u,w) = ev(u,w) for u ∈
[
0; a(i)

]
(33)

In most cases, the magnetic component Hu(u,w) is not normal to the
perfectly conducting walls. Thus it makes a jump in u = 0 and u = a(i).
However, we don’t represent the function Hu(u,w) with a cosine series.
For H-plane junctions, the Cartesian components H(g)

x and E(g)
y are

expanded on sin
(

nπx
a(g)

)
functions as shown in Equation (24). In order

to make the solving of field continuity relations easier in the planes
z = 0 and z = l (16)–(17), Hu(u,w) is also expanded on sin

(
nπx
a(g)

)
basis functions:

hu(u,w) =
+∞∑
n=1

In(w) sin(αnu) (34)

The sine series hu(u,w) is zero when u = 0 and u = a(i) (Figure
2). This expansion does not give access to the jumps made by the
magnetic componentHu(u,w) on the perfectly conducting walls. Thus,
the expansion hu(u,w) becomes identified with Hu(u,w) in the open
interval ]0; a(i)[ and not in the closed interval [0; a(i)]. The first equation
of system (21) allows us to express the values of Hu(u,w) on the walls
u = 0 and u = a(i) in term of the Fourier’s coefficients Vn(w):

Hu(u = 0, w) = −f
′
1(w)
jkZ

∞∑
n=1

αnVn(w)

Hu(u = a(i), w) = −f
′
2(w)
jkZ

∞∑
n=1

αn(−1)nVn(w)

(35)

The second magnetic component Hw(u,w) is always tangential to
boundary surfaces. Function Hw(u,w) is non zero when u = 0 and
u = a(i). So, Hw(u,w) is expanded in a cosine series as follows:

hw(u,w) =
+∞∑
n=0

Hn(w) cos(αnu) (36)
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with

Hw(u,w) = hw(u,w) for u ∈
[
0 ; a(i)

]
(37)

If the upper and lower walls are not bent, the previous expansions
in Fourier’s series represent combinations of rectangular waveguides
eigen-modes TEn0. This property is not satisfied if the magnetic
component Hu(u,w) is expanded on cosine basis functions.

2.8. Initial Value Problem

The Fourier’s series ev(u,w), hu(u,w) and hw(u,w) are of period
2a(i). ev(u,w) and hw(u,w) are continuous and at least once derivable
with respect to u. Consequently, theirs derivatives with respect to u
become identified with the derivatives of theirs expansions in Fourier’s
series. This identification does not make any sense for hu(u,w) but
the derivative of this function does not appear in equation (21).
Substituting geometric function D(u,w) with its expansion in sine
series (38), expansions ev(u,w), hu(u,w) and hw(u,w) are solutions
of Equation (21). With this expansion (38), left and right-hand sides
of (21) are both either odd functions or even functions in terms of u.

d(u,w) =
+∞∑

q=−∞
dq(w) sin (αqu) (38)

with

D(u,w) = d(u,w) for u ∈]0; a(i)[ (39)

and

dq>0(w) =
f ′1(w) − (−1)qf ′2(w)

αqf21(w)
; dq<0(w) = −dq>0(w); d0(w) = 0

(40)

After projecting equations of system (21) on trigonometric functions,
several calculations lead to a set of partial differential equations (41)
relating coefficients Vn and In.

For 1 ≤ n ≤ N


∂Vn(w)
∂w

=
N∑

q=1

Pnq(w)Vq(w) + jkZC(w)In(w)

∂In(w)
∂w

=
1

jkZC(w)

((
nπ

f21(w)

)2

− k2

)
Vn(w) +

+∞∑
q=1

Qnq(w)Iq(w)

(41)
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with

Pnq = αq (dq+n(w) − dq−n(w)) (42)
Qnq = −αn (dq+n(w) + dq−n(w)) (43)

From (40), (42) and (43), we show that the elements of matrices P and
Q are equal except for the diagonal elements that have opposite signs.

For q 	= n,

Pnq = Qnq =
2nq

n2 − q2
f ′1(w) − (−1)q+nf ′2(w)

f21(w)
(44a)

and

Pnn = −Qnn =
f ′1(w) − f ′2(w)

2f21(w)
(44b)

The numerical solution of system (41) requires a truncation order N .
Then the covariant components inside the junction are described by
only N coefficients (Vn and In) and the fields inside the rectangular
waveguides by N independent modes TEn0. Differential system (41)
has non-constant coefficients and represents an initial value problem.

The eigen-modes TEn0 are independent. This allows us to define
2N independent initial conditions. Inside the input waveguide, each
combination is characterized by amplitudes

(
W

(i)
n ;Y (i)

n

)
. Relations

of continuity (16) allows amplitudes (Vn; In) to be defined in z = 0.
A numerical integration leads to the amplitudes (Vn; In) in z = l.
Relations of continuity (17) give the generalized voltages W (o)

n and
the generalized currents Y (o)

n associated with the output waveguide.
The normalized complex amplitudes are derived from relation (30).
The fourth order Runge-Kutta’s method is chosen for numerical
integrations from w = z = 0 to w = z = l. In references [2, 3], we
have shown that the amplitudes (Vn; In) and (V ∗

n ;−I∗n) are solution
of system (41). Using this property, we determine the multimodal
scattering matrix with only N numerical integrations. Moreover, the
differential system (41) contains the structure geometry. As shown
in references [2, 3], electromagnetic effects of symmetric can be easily
deduced and the system size reduced and a saving in computation time
obtained [2, 3].
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3. GENERALIZED TELEGRAPHIST’S METHOD AND
WAVEGUIDES

3.1. Transverse Components – Longitudinal Components

Vectors �E and �H are expanded as follows:

�E = �ET + Ez�uz

�H = �HT +Hz�uz

(45)

where �ET and �HT represent the transverse components, Ez and
Hz, the longitudinal components. Maxwell-Faraday’s equation and
Maxwell-Ampere’s equation associated with the constitutive relations
yield [5, 6]:

∂ �ET

∂z
= −jkZ

(
�HT ∧ �uz

)
+ �∇T · Ez

∂ �HT

∂z
= j

k

Z

(
�ET ∧ �uz

)
+ �∇T ·Hz

(46)

and

Ez =
Z

jk
�∇T ·

(
�HT ∧ �uz

)
Hz = − 1

jkZ
�∇T ·

(
�ET ∧ �uz

) (47)

where ∧ denotes the vectorial product and �∇T , the transverse
Hamilton’s operator:

�∇T = �ux
∂

∂x
+ �uy

∂

∂y
(48)

In the case of TE polarization, Ez = 0 and then we obtain the following
system of coupled differential equations:

∂ �ET

∂z
= −jkZ

(
�HT ∧ �uz

)
(49a)

∂ �HT

∂z
= j

k

Z

(
�ET ∧ �uz

)
− 1
jkZ

�∇T ·
[
�∇T ·

(
�ET ∧ �uz

)]
(49b)
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3.2. Expression of Transverse Components

The generalized telegraphist’s method leads to expand the transverse
components on a basis of orthogonal functions [5, 6]:

�ET =
∑

q

Uq(z)
⇀
eq(x, y, z)

�HT =
∑

q

Jq(z)�hq(x, y, z)
(50)

For a rectangular waveguide excited by the fundamental mode, the
eigen-modes TEn0 give the orthogonal functions ⇀

eq and �hq:

⇀
eq(x, y, z) = sin

(
nπ (x− f1(z))

a

)
�uy (51)

�hq(x, y, z) = sin
(
nπ (x− f1(z))

a

)
�ux (52)

with

�hq(x, y, z) = ⇀
eq(x, y, z) ∧ �uz (53)

and
2
ab

∫
Σ

⇀
eq(x, y, z)

⇀
en(x, y, z)dxdy=

2
ab

∫
Σ

�hq(x, y, z)�hn(x, y, z)dxdy=δqn

(54)

δqn is the Kronecker’s symbol and Σ = a × b, the rectangular cross-
section of the microwave component at distance z (where a = f21(z)).
For a rectangular cross-section, functions �hq (or ⇀

eq) are solutions of
the following eigen-values problem:

�∇T ·
[
�∇T · �hq

]
+

(nπ
a

)2
�hq = 0 (55)

The orthonormality relation (54) permits a formal determination of
coefficients Uq(z) and Jq(z) with:

Un(z) =
2
ab

∫
Σ

�ET (x, y, z)⇀
en(x, y, z)dxdy

Jn(z) =
2
ab

∫
Σ

�HT (x, y, z)⇀
en(x, y, z)dxdy

(56)



Progress In Electromagnetics Research, PIER 88, 2008 67

3.3. Initial Condition Problem

Integrating over Σ the scalar product of Equation (49a) with
⇀
en(x, y, z), and of Equation (49b) with �hn(x, y, z), we obtain:

∂Un(z)
∂z

=
∑

q

RnqUq(z) + jkZJn(z) (57a)

∂Jn(z)
∂z

=
∑

q

RnqJq(z) +
jk

Z
Un(z)

− 1
jkZ

2
ab

∫
Σ

�∇T ·
[
�∇T ·

(
�ET ∧ �uz

)]
�hndxdy (57b)

where for q 	= n,

Rnq = − 2
f21(z)

f2(z)∫
f1(z)

�en
∂�eq
∂z
dx =

2nq
n2 − q2

f ′1(z) − (−1)q+nf ′2(z)
f21(z)

(58a)

and

Rnn =
f ′1(z) − f ′2(z)

2f21(z)
= − C

′(z)
2C(z)

(58b)

Taking into account Equations (55) and (56), the two-dimensional
Gauss’s theorem gives the integral of Equation (57b) in the following
form:

2
ab

∫
Σ

�∇T ·
[
�∇T ·

(
�ET ∧ �uz

)]
�hndxdy

= −
(
πn

f21(z)

)2

Un+
2
ab

∮
Γ

�hn

(
∂ �ET

∂N
∧ �uz

)
dl − 2

ab

∮
Γ

(
�ET ∧ �uz

)∂�hn

∂N
dl (59)

where Γ is the rectangular curve of the microwave component at
distance z. ∂

∂N denotes the normal derivative and �uN the unit vector
normal to Γ. Remembering that ∂

∂N = �uN
�∇T and taking into account

expression (47), the first curve integral becomes:

∮
Γ

�hn

(
∂ �ET

∂N
∧ �uz

)
dl = −jkZ

∮
Γ

�hn�uNHzdl (60)
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For x = f1(z) and x = f2(z)+a(i), �uN = �ux but, from expression (52),
�hn(x, y, z) = 0. For y = 0 and y = b, �uN = �uy and �uN

�hn = 0. Then
the first curve integral is zero:

∮
Γ

�hn

(
∂ �ET

∂N
∧ �uz

)
dl = 0 (61)

Component �ET is parallel to the unit vector �uy. Then, �ET is zero on
the perfectly conducting walls x = f1(z) and x = f2(z) + a(i). In the
same way, from expression (52), ∂�hn

∂N = ∂�hn
∂y = 0 on the walls y = 0

and y = b. Then the second curve integral is also zero.∮
Γ

(
�ET ∧ �uz

) ∂�hn

∂N
dl = 0 (62)

Substituting expressions (59), (61) and (62) into differential system
(57), we obtain for 1 ≤ n ≤ N :


∂Un(z)
∂z

=
N∑

q=1

Rnq(z)Uq(z) + jkZJn(z)

∂Jn(z)
∂z

=
1
jkZ

((
nπ

f21(z)

)2

− k2

)
Un(z) +

+∞∑
q=1

Rnq(z)Jq(z)

(63)

The system of coupled differential Equation (63) has non-constant
coefficients and represents an initial condition problem. Using the
numerical processing presented in Section 2.8, the resolution of the
differential system provides the multimodal scattering matrix.

4. CONCLUSIONS

The curvilinear coordinate method leads to the non-constant
coefficients differential system (41), the Telegraphists method to
system (63). Using the following change of variables,

Un(z) = Vn(w)
Jn(z) = C(w)In(w)

(64)
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system (63) takes the following form:


∂Vn(z)
∂z

=
N∑

q=1

Rnq(z)Vq(z) + jkZC(z)In(z)

∂In(z)
∂z

=
1

jkZC(z)

((
nπ

f21(z)

)2

− k2

)
Un(z)

+
+∞∑
q=1

(
Rnq(z) −

C ′(z)
C(z)

δnn

)
Iq(z)

(65)

Matrices P (44) and R (58) are identical and matrices Q (44) and R
(58) are equal except for diagonal elements that have opposite signs.

For q 	= n,

Rnq = Qnq (66a)

and

Rnn = −Qnn (66b)

According to (58b) and (67b), we can write:

Rnn(z) = Qnn(z) +
C ′(z)
C(z)

(67)

Taking into account matrix relations (66) and expression (67), we show
that systems (41) and (65) are equivalent with z = w:


∂Vn(z)
∂z

=
N∑

q=1

Pnq(z)Vq(z) + jkZC(z)In(z)

∂In(z)
∂z

=
1

jkZC(z)

((
nπ

f21(z)

)2

− k2

)
Un(z) +

+∞∑
q=1

Qnq(z)Iq(z)

(68)

A similar demonstration can be used in the case of an E-plane
discontinuity excited by LSE1n modes. From a theoretical point
of view, the curvilinear coordinate method using for the analysis of
microwave components of rectangular cross-section is then equivalent
to the Telegraphists method.
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