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Abstract—This paper links the polarization-sensitive-array signal
detection problem to quadrilinear decomposition model. Exploiting
this link, it generates a deterministic blind quadrilinear decomposition-
based signal detection algorithm, which doesn’t require DOA (direction
of arrival) and polarization information and has blind and robust
characteristics. The proposed algorithm fully utilizes the polarization,
spatial and temporal diversity. The simulation results reveal that
the performance of blind quadrilinear decomposition-based signal
detection algorithm for polarization sensitive uniform square array is
close to nonblind MMSE method, and even works better than trilinear
decomposition algorithm.

1. INTRODUCTION

Polarization sensitive arrays have some inherent advantages over tra-
ditional antenna arrays, such as the capability of separating signals
based on their polarization characteristics [1, 2]. Intuitively, polariza-
tion sensitive antenna arrays will provide significant improvements for
signals which have different polarization characteristics. Polarization
sensitive arrays are used widely in the communication, radio and nav-
igation [5, 6]. Classically, beamforming [7–12, 36] requires knowledge
of a direction vector of the desired source. Maximum likelihood signal
estimation method for polarization sensitive arrays is proposed in [13].
Filtering performance of polarization sensitive arrays in completely po-
larized case is investigated in [14]. The methods mentioned above are
nonblind methods, because they require the knowledge of DOA and
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polarization information. Blind quadrilinear decomposition-based sig-
nal detection algorithm for polarization sensitive uniform square array
is investigated in this paper.

It is well known that most of signal processing methods are
based on the theory of matrix or the bilinear model. In general,
matrix decomposition is not unique, since inserting a product of an
arbitrary invertible matrix and its inverse in between two matrix
factors preserves their product. Matrix decomposition can be unique
only if one imposes additional problem-specific structural properties
including orthogonality, Vandermonde, Topeliz, constant modulus or
finite-alphabet constraints. Compared with the case of matrices,
trilinear/multilinear decomposition has a distinctive and attractive
feature: it is often unique. The uniqueness of trilinear/multilinear
decomposition is of great practical significance, which is crucial in
many applications such as chemometrics [15], spectrophotometric,
chromatographic and flow injection analysis. In signal processing
field, trilinear/multilinear decomposition can be thought of as a
generalization of ESPRIT and joint approximate diagonalization
ideas [16, 17]. Trilinear/multilinear decomposition is thus naturally
related to linear algebra for multi-way arrays [18]. Trilinear/multilinear
decomposition is used widely in blind receiver detection for Direct-
sequence code-division multiple access (CDMA) system [19], array
signal processing [20–26], blind estimation of Multi-Input-Multi-
Output (MIMO) system [27], blind Speech Separation [28], downlink
receiver for space-time block-boded CDMA System [29] and multiuser
detection for Single-Input-Multi-Output (SIMO) CDMA System [30].

Quadrilinear decomposition, as trilinear decomposition’s exten-
sion, will be introduced in this paper. Our work links the polarization-
sensitive-array signal detection problem to quadrilinear decomposition
and builds a deterministic blind quadrilinear decomposition-based sig-
nal detection algorithm whose performance is close to nonblind mini-
mum mean-squared error (MMSE). The proposed algorithm supports
small sample sizes, and even works better than trilinear decomposi-
tion. Our proposed algorithm does not require knowledge of the DOA
and polarization information, but relies on a fundamental result of the
uniqueness of low-rank four-way array decomposition [31].

This paper is structured as follows. Section 2 develops data model.
Section 3 discusses identifiability issues and deals with algorithmic
issues. Section 4 presents simulation results, and Section 5 summarizes
our conclusions.

Denote: We denote by (.)∗ the complex conjugation, by (.)T the
matrix transpose, and by (.)H the matrix conjugate transpose. The
notation (.)+ refers to the Moore-Penrose inverse (pseudo inverse).
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‖ ‖F stands for Forbenius norm. IP is a P × P identity matrix.

2. THE DATA MODEL

A uniform square array consisted of M × N pairs of crossed dipoles
is shown in Fig. 1. Each dipole in the array is a short dipole, so the
output voltage from each dipole is proportional to the electric field
component along that dipole. There are orthogonal short dipoles, the
x- and y-axis dipoles, parallel to the x, and y axes, respectively. The
distance between nth sublinear array with M dipole pairs and x-axis
is (n − 1)d, n = 1, 2, . . . , N . Similarly, the distance between mth
sublinear array withNdipole pairs and y-axis is (m − 1)d, m = 1,
2, . . . , M . As the distance between two adjacent dipole pairs, d is
assumed to be a half wavelength to avoid angle ambiguity problems.
We consider signals in the far-field, in which case the signal sources
are far enough away that the arriving waves are essentially planes over
the length of the array. Assume that the noise is independent of the
source, and noise is additive i.i.d. Gaussian.
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Figure 1. The structure of polarization sensitive uniform square array.

2.1. The Received Signal Model for Polarization Sensitive
Antenna

We begin by considering the polarization of an incoming signal.
Suppose that an antenna is at the origin of a spherical coordinate
system, and a signal b(t) is arriving from direction θ, ϕ, where ϕ is
the elevation angle and θ is the azimuth angle. Let this signal be a
transverse electromagnetic (TEM) wave, and consider the polarization
ellipse produced by the electric field in a fixed transverse plane.
Polarization parameters are γ, η. We characterize the antenna in
terms of its response to linearly polarized signals in the x, and y
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directions. Let vx be the complex voltage induced at the antenna
output terminals by an incoming electromagnetic signal with a unit
electric field polarized entirely in the x direction. Similarly, let vy be
the output voltages induced by signals with unit electric fields polarized
in the y directions. According to [4], the total output voltage from
polarization antenna is

yp(t) =
[
cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ

] [
sin γejη
cos γ

]
b(t) = sb(t) (1)

where s =
[
cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ

] [
sin γejη
cos γ

]
is the polarization vector,

and it relates to polarization and DOA information.

2.2. The Received Signal Model for Polarization Sensitive
Array

Assume that the kth signal bk(t), k = 1, 2, . . . ,K, arrives at the
uniform square array with M ×N pairs of crossed dipoles.

When K sources impinge the polarization sensitive antenna on
the original point, the received signal at the output of the polarization
sensitive antenna is

R11 = SBT (2)

where S = [s1, s2, . . . , sK ] is the polarization matrix, B =
[bT1 , b

T
2 , . . . , b

T
K ] is the source matrix with L×K.

When the sublinear array tends to the x direction, the mth (m =
1, 2, . . . ,M) element on the x-axis phase-lag compared with original
point is −2π(m− 1)d cosϕi sin θi/λ and its spatial shift factor is pi =
exp(−j2πd cosϕi sin θi/λ). Then analyze the situation on the y-axis,
in comparison to the original point the nth(n = 1, 2, . . . , N) element
phase-lag is −2π(n−1)d sinϕi sin θi/λ. qi = exp(−j2πd sinϕi sin θi/λ)
is the spatial shift factor. The phase difference between the (m,n)th
dipole pair and the original point is

∆φmn(i) = −2π((m− 1)d cosϕi sin θi + (n− 1)d sinϕi sin θi)/λ (3)

Compared with the received signal of the element on the original point,
which’s shown as Eq. (2), the received signal of the (m,n)th element
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in the uniform square array can be described as:

Rm,n = S




exp(∆φmn(1))
exp(∆φmn(2))

. . .
exp(∆φmn(K))


BT

= SDm(G)Dn(H)BT , m=1,2, . . . ,M ; n = 1, 2, . . . , N ; (4)

where

G =


1 · · · 1
exp(−j2πd sin ϕ1 sin θ1/λ) · · · exp(−j2πd sin ϕK sin θK/λ)

...
. . .

...
exp(−j2πd sin ϕ1 sin θ1/λ) · · · exp(−j2π(N − 1)d sin ϕK sin θK/λ)


∈C

N×K(5)

H =


1 · · · 1
exp(−j2πd cos ϕ1 sin θ1/λ) · · · exp(−j2πd sin cosK sin θK/λ)

...
. . .

...
exp(−j2π(M − 1)d cos ϕ1 sin θ1/λ) · · · exp(−j2π(M − 1)d sin cosK sin θK/λ)




∈ C
M×K (6)

Di(.) is understood as an operator that extracts the ith row of its
matrix argument and constructs a diagonal matrix out of it.

If adding noise,

R̃mn = Rmn+Nmn =SDm(G)Dn(H)BT +Nmn,

m = 1,2, . . . ,M ;n=1,2 . . . , N (7)

where Nmn can be regarded as the slice of the received noise.
When accumulating M × N slices into M × N × L × 2 four

dimensional data set R, the signal in Eq. (4) is also denoted through
rearrangements

rm,n,l,p =
K∑

k=1

gm,khn,kbl,ksp,k,

m = 1, . . . ,M ;n=1, . . . , N ; l=1, . . . , L; p=1, 2; (8)

where gm,k and hn,k stand for the elements of matrix G and H,
respectively, sp,k represents the (p, k) element of polarization matrix S
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and bl,k means the (l, k)th element of transmit signal source matrix B.
Eq. (8) is called our quadrilinear decomposition.

The symmetry of the quadrilinear model in Eq. (8) allows three
more matrix system rearrangements, which can be interpreted as
slicing the 4-dimensional data along different directions.

Un,p = BDn(H)Dp(S)GT , n = 1, 2, . . . , N, p = 1, 2; (9)

Vp,l = GDp(S)Dl(B)HT , p = 1, 2; l = 1, . . . , L; (10)

Wl,m = HDl(B)Dm(G)ST , l = 1, . . . , L; m= 1, 2, . . . ,M ; (11)

3. QUADRILINEAR DECOMPOSITION-BASED BLIND
SIGNAL DETECTION FOR POLARIZATION
SENSITIVE SQUARE ARRAY

3.1. Quadrilinear Alternating Least Squares

QALS (Quadrilinear Alternating Least Square) algorithm is the
common data detection method for quadrilinear model. The basic
idea of QALS is as follows: (a) Each time, update a matrix by
using least squares conditioned on previously obtained estimates of
the remaining matrix; (b) proceed to update another matrix; (c) repeat
until convergence. QALS algorithm is discussed in detail as follows.

Rmn =




R11

R12
...

RMN


 =




SD1(G)D1(H)
SD1(G)D2(H)

...
SDM (G)DN (H)


BT

According to Eq. (7), Least squares fitting is

min
G,H,S,B

∥∥∥∥∥∥∥∥∥




R̃11

R̃12
...

R̃MN


 −




SD1(G)D1(H)
SD1(G)D2(H)

...
SDM (G)DN (H)


BT

∥∥∥∥∥∥∥∥∥
F

(12)

where ‖ ‖F stands for the Frobenius norm. R̃mn,m = 1, 2, . . . ,M ;
n = 1, 2 . . . , N are the noisy slices.

Least squares update for B is

B̂T =




ŜD1(Ĝ)D1(Ĥ)
ŜD1(Ĝ)D2(Ĥ)

...
ŜDM (Ĝ)DN (Ĥ)




+ 


R̃11

R̃12
...

R̃MN


 (13)
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where [ ]+ stands for pseudo-inverse.
�

G, Ĥ and Ŝ denote previously
obtained estimates of G, H and S.

Similarly, from the second way of slices: Un,p = BDn(H)Dp(S)GT ,
n = 1, 2, . . . , N , p = 1, 2; the LS update for G is

ĜT =




B̂D1(Ĥ)D1(Ŝ)
B̂D1(Ĥ)D2(Ŝ)

...
B̂DN (Ĥ)DP (Ŝ)




+ 


Ũ11

Ũ12
...

ŨNP


 (14)

From the third way of slices: Vp,l = GDp(S)Dl(B)HT , p = 1, 2;
l = 1, . . . , L; and then LS update for H is

ĤT =




ĜD1(Ŝ)D1(B̂)
ĜD1(Ŝ)D2(B̂)

...
ĜDP (Ŝ)DL(B̂)




+ 


Ṽ11

Ṽ12
...

ṼPL


 (15)

Finally, using the fourth mode of slices: Wl,m = HDl(B)Dm(G)ST ,
l = 1, . . . , L; m= 1, 2, . . . ,M ; we can also obtain the LS update for S

ŜT =




ĤD1(B̂)D1(Ĝ)
ĤD1(B̂)D2(Ĝ)

...
ĤDL(B̂)DM (Ĝ)




+ 


W̃11

W̃12
...

W̃LM


 (16)

ALS is optimal when noise is additive i.i.d. Gaussian [32]. ALS
algorithm has several advantages: it is easy to implement, guarantee
to converge and simple to extend to higher order data. ALS algorithm
is known to suffer from degeneracy and slow convergence. Although
a unique solution exists, it is not always guaranteed to be found, as
the ALS algorithm can be stuck in local minima [33]. ALS can be
initialized by eigen-decomposition to speed up convergence. According
to Eq. (4), we get the two slices, like R1,1 = SD1(G)D1(H)BT ;
R1,2 = SD1(G)D2(H)BT , which are also denoted as

R1,1 = SBE ; R1,2 = SDBE (17)

where Φ11 = D1(G)D1(H); Φ12 = D1(G)D2(H), BE = Φ11BT ;
D = Φ12Φ−1

11 .
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Construct auto- and cross-correlation matrices:

R1 =RH
1,1R1,1 =BH

E SHSBE ; R2 =RH
1,1R1,2 =BH

E SHSDBE (18)

Define α = BH
E SHS, then

R1 = αBE ; R2 = αDBE (19)

According to (19),

α+R1 = D−1α+R2 (20)

where [.]+ is the pseudo-inverse. Let uH
f , the fth row of α+and λk

be the kth element along the diagonal of D−1. The general eigen-
decomposition for (R1,R2) is given as

uH
k (R1 − λkR2) = 0, k = 1, 2, . . . ,K (21)

The λk’s and uH
k ’s are the generalized eigenvalues and left generalized

eigenvectors of (R1,R2). Once α+ is recovered, then BE = α+R1;
S = R1,1[BE ]+.

From other ways of slices, we estimate other parameters’
initialization by using eigen-analysis with two slices.

3.2. Identifiability

The k-rank concept is very important in the trilinear algebra.
Definition1 [18]: Consider a matrix A ∈ CM×N . If rank(A) =

r, then A contains a collection of r linearly independent columns.
Moreover, if every l ≤ N columns of A are linearly independent, but
this does not hold for every l + 1 columns, then A has k-rank kA = l.
Note that kA ≤ rank(A), ∀A.

Theorem 1 [31]: Rmn = SDm(G)Dn(H)BT + Nmn, m =
1, 2, . . . ,M ; n = 1, 2, . . . , N , where S ∈ C2×K , B ∈ CL×K , H ∈
CM×K , G ∈ CN×K , if

kS + kB + kG + kH ≥ 2K + 3 (22)

then G, H, B and S are unique up to permutation and scaling of
columns, that is to say, any other quadruple Ḡ, H̄, B̄, S̄ that construct
Rmn (m = 1, 2, . . . ,M, n = 1, 2, . . . , N) is related to G, H, and S via

Ḡ = GΠ∆1, H̄ = HΠ∆2, B̄ = BΠ∆3, S̄ = SΠ∆4 (23)



Progress In Electromagnetics Research, PIER 87, 2008 271

where Π is a permutation matrix, and ∆1, ∆2, ∆3, ∆4 are diagonal
scaling matrices satisfying

∆1∆2∆3∆4 = I (24)

Scale ambiguity and permutation ambiguity are inherent to the
separation problem. This is not a major concern. Permutation
ambiguity can be resolved by resorting to a priori or embedded
information. The scale ambiguity can be resolved by using automatic
gain control and embedded information.

Generically, a matrix is full rank and full k-rank. Therefore,
Eq. (22) becomes

min(2,K) + min(L,K) + min(N,K) + min(M,K) ≥ 2K + 3 (25)

For the received noisy signal, we use quadrilinear decomposition to get
the estimated matrices

B̂ = BΠ∆3 + N1 (26)

where N1 is the noise. Permutation ambiguity and scale ambiguity are
inherent in quadrilinear decomposition. The scale ambiguity can be
resolved.

3.3. The Steps of QALS Algorithm

The blind quadrilinear decomposition-based signal detection algorithm
for polarization sensitive uniform square array is proposed in this
paper. The QALS algorithm can firstly attain the source matrix, and
then the hard decision is received for the source matrix. The detailed
steps are displayed as follows:

(1) Initialize the direction matrices G, H, the polarization matrix S
and the source matrix B;

(2) LS update for B according to Eq. (13);
(3) LS update for G according to Eq. (14);
(4) LS update for H according to Eq. (15);
(5) LS update for S according to Eq. (16);
(6) Repeat step (2) to step(5) until convergence;
(7) Decide for the source matrix.
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4. SIMULATION AND ANALYSIS

Let the received noisy signal R̃m,n = SDm(G)Dn(H)BT + Nm,n,
m = 1, 2, . . . ,M ; n = 1, 2 . . . , N , where Nm,n is the received noise,
and then we define SNR

SNR = 10 log10

M∑
m=1

N∑
n=1

∣∣SDm(G)Dn(H)BT
∣∣2

M∑
m=1

N∑
n=1

|Nm,n|2
dB (27)

We present Monte Carlo simulations which are to assess the
performance of blind signal detection for polarization sensitive uniform
square array based on quadrilinear decomposition. The number of
Monte Carlo trials is 1200.

A uniform square array with 16 pairs (4× 4) of crossed dipoles is
used in the experiment. The antennas are considered to be completely
polarized in the simulations and each signal source only has one path
to polarization sensitive array. We adopt Binary Phase Shift Keying
(BPSK) to modulate signal and complex additive gauss white noise
is added into this system. We compare our proposed algorithm with
the nonblind minimum mean-squared error (MMSE) receiver which
requires perfect knowledge of DOA (direction of arrival), SNR and
polarization information. MMSE receiver offers a performance bound
against which blind algorithms are often measured [34, 35]. For all the
simulation, the distance between two adjacent dipole pairs is assumed
to be half wavelength and SNR varies from −10 dB to 8 dB. Note that
L is the number of snapshots and K is the number of sources.

Simulation 1. Quadrilinear decomposition-based signal detection
algorithm polarization sensitive square array is compared with trilinear
decomposition algorithm.

Rm,n = S




exp(∆φmn(1))
exp(∆φmn(2))

. . .
exp(∆φmn(K))


BT

= SD(m−1)N+n(A)BT

where
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Figure 2. Comparison of
algorithm performances.
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Figure 3. Algorithm perfor-
mances comparison with L = 50.
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Figure 4. Algorithm perfor-
mances comparison with L =
100.
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Figure 5. Algorithm perfor-
mances comparison with L =
300.

A =




exp(∆φ11(1)) exp(∆φ11(2)) · · · exp(∆φ11(K))
exp(∆φ12(1)) exp(∆φ12(2)) · · · exp(∆φ12(K))

...
...

. . .
...

exp(∆φmn(1)) exp(∆φmn(2)) · · · exp(∆φmn(K))
...

...
. . .

...
exp(∆φMN (1)) exp(∆φMN (2)) · · · exp(∆φMN (K))




We can use trilinear decomposition [22–26] for blind signal detection for
polarization sensitive uniform square array. Trilinear decomposition
algorithm is the common data detection method for trilinear model
[18], and it has been discussed in detailed in [22]. It can be concluded
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from Fig. 2 that our proposed algorithm runs better than trilinear
decomposition algorithm. In general, quadrilinear decomposition has
better data fitting performance than trilinear decomposition, and it
has better bit error rate performance than trilinear decomposition.

Simulation 2. We examine the difference between MMSE (the
nonblind minimum mean-squared error) and our blind Quadrilinear
decomposition-based receiver algorithm for the uniform square array.
When K = 3 and L = 300, it’s clearly revealed in Fig. 3
that our proposed algorithm is very close to traditional nonblind
MMSE method. Then the performance of the blind Quadrilinear
decomposition-based receiver algorithm for the uniform square array
under different L is also investigated in the simulation. We set L = 50,
L = 100 and L = 300. Fig. 3, Fig. 4 and Fig. 5 show that the BER
(bit error rate) performance of our new algorithm improves with the
increase of the snapshots number. When L gets larger, this algorithm
has better suppress noise performance, and then its BER performance
is improved.

Simulation 3. In this simulation, we study the different
performances of Quadrilinear decomposition-based signal detection
algorithm in terms of different source numbers. When setting K = 2,
K = 3 and K = 4 respectively, it’s evidently shown that the BER
performance of our new algorithm degrades with the increase of the
signal source number K. When K gets larger, the interference between
sources increases, and then its BER performance degrades.
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Figure 6. Algorithm performances under different source numbers.
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5. CONCLUSIONS

This paper has developed a link between quadrilinear decomposition
and blind signal detection for polarization sensitive uniform square
array. Relying on the uniqueness of low-rank four-way array decompo-
sition and quadrilinear alternating least squares, we establish a deter-
ministic blind quadrilinear decomposition-based signal detection algo-
rithm. The algorithm, as trilinear decomposition’s extention, doesn’t
require DOA information and polarization information, so it has blind
and robust characteristics. The simulation results indicate that the
performance of blind quadrilinear decomposition-based signal detec-
tion algorithm for polarization sensitive uniform square array is close
to nonblind MMSE method, and works better than trilinear decompo-
sition.
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