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Abstract—A well known property of large circular closed-loop arrays
is that when the dimensions and the distance of the cylindrical dipoles
are properly chosen, the arrays possess very narrow resonances. As
far as single isolated loop arrays are concerned, the phenomenon
has been predicted and analyzed in the past in the framework of
“two-term” theory. In the present paper the same methodology
is, for the first time, applied to investigate the system of two
coupled identical circular arrays. It is found that the spectral
profile of this new array is characterized by the coupling-induced
splitting of the resonances of the single loop array into symmetric
and antisymmetric supermodes, in direct analogy with other types of
coupled electromagnetic cavities. Due to the circular symmetry of
the individual arrays, the phenomenon is strongly correlated to the
optical counterpart of two coupled traveling-wave optical resonators,
such as whispering gallery or microring resonators. By borrowing
the resonance splitting model from optical resonators, this analogy
connection is investigated and interesting conclusions are reached.

1. INTRODUCTION

It is the result of theoretical and experimental research [1–12] that
large circular arrays (consisting of many elements N and having a
circumference of many wavelengths) of identical, parallel and non-
staggered cylindrical dipoles possess a series of very narrow resonances,
when the inter-element spacing d, the length and the radii of the
identical dipoles are properly selected. Resonance means that the
driving-point conductance has a maximum with a very large value,
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while the driving-point susceptance is zero. A series of narrow
resonances occur as the electrical length of the dipoles is varied.
This has been observed experimentally in [3, 5] and theoretically
in [1], where the varying parameter is the frequency. In [1] only a
single element is driven and a particular phase sequence m (m =
N/2, N/2 − 1, . . .), is associated with each resonance. Resonances
with larger m occur at higher frequencies. For higher frequencies
the resonances are narrower. The narrowest resonance corresponds
to the maximum value of m which is equal to N/2 (or to (N − 1)/2 if
N is odd). When resonance occurs, the currents on all N elements
are large. The distribution of the currents around the array can
be thought of as a slow standing wave which can be described by
cos

[
2π(l−1)m

N

]
, l = 1, 2, . . . , N [2, 4, 10]. The circumference C of the

array is always an integer multiple of the effective wavelength λm of
the wave that is supported by the array [9, 10], i.e., C = |m|λm.

The resonant properties of circular closed-loop arrays are evidence
of their behavior as electromagnetic cavities oscillating with resonant
modes which are guided around the circumference thanks to the
coupling mechanism between the radiating dipole elements. In the field
of optics, similar resonant modes are trapped in dielectric microdisks
and propagate very close to their boundary by continuous total
internal reflections. Due to the analogy of this mechanism with the
classical problem of acoustic propagation along concave surfaces [13],
these optical cavities have been termed “whispering gallery” (WG)
resonators [14] and constitute a deeply studied type of resonator with
extensive applications [15, 16]. Similar properties are exhibited by
circular microring resonators which replace disks when resonances
of higher-radial order are unwanted and behave as bent dielectric
waveguides. Both types of resonators can be referred to with the
established term “traveling-wave” (TW) — in contrast to the standing-
wave-resonators. Similarly to circular dipole arrays, modes supported
by TW resonators are also based on a constructive self-interference
condition which is that the round-trip phase acquired by the trapped
wave on resonance is an integer multiple of 2π. The resonances are
manifested as narrow peaks in the transmitted or reflected power
spectrum, which are obtained when these cavities are coupled to
external waveguides in order to realize wavelength-selective filters [17].

The complexity of the resonance problem increases when two
electromagnetic cavities are coupled together. In TW optical
resonators, the case has already been studied [18] as the fundamental
representative of a currently attractive class of super-resonators termed
“photonic molecules”, which includes cluster architectures of coupled
resonators [19]. The filter application of the double-microring system
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has also been proposed for the implementation of tunable optical
reflectors [20, 21]. The coupling of resonators causes the splitting
of their individual modes to bonding (symmetric) and antibonding
(antisymmetric) supermodes, which are characterized, respectively,
by even or odd parity with respect to the symmetry plane, and
the frequency splitting is proportional to the inter-resonator coupling
coefficient.

Based on the outlined analogy between circular arrays and
cylindrical dielectric resonators, it follows that the study of coupling
between two identical circular arrays would normally be the next step,
leading to the analysis and implementation of more complex, super-
resonator configurations of coupled closed-loop arrays. In this paper,
for the first time to the authors’ knowledge, the “two-term” theory
is applied to investigate the resonant properties of a coupled pair of
identical circular arrays of dipoles. The numerical results confirm the
expected splitting of the resonances of the isolated array to neighbor
resonances, which correspond to coupled supermodes with symmetric
or antisymmetric dipole current distributions along the arrays, with
respect to the symmetry plane. The frequency splitting is found to be
a decreasing function of the minimum distance between the arrays. The
equivalence between the RF structure and its optical counterparts is
further explored by seeking a connection of the magnitude of frequency
splitting with the inter-dipole coefficients of mutual coupling predicted
by the “two term” theory, in analogy to the corresponding familiar
formula connecting frequency splitting and coupling coefficient in TW
resonator pairs.

2. TWO-TERM THEORY MODELING OF TWO
COUPLED CIRCULAR CLOSED-LOOP ARRAYS

The geometry of two coupled identical circular arrays with N elements
each is shown in Fig. 1. We choose to excite only one of the dipoles,
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y

Figure 1. Geometry of two coupled circular dipole arrays with one
voltage-driven dipole.
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the one on the azimuthal position θ = 180◦ in the left array, so that
only symmetrical modes with respect to the x-axis are excited on the
coupled system (N is assumed to be even). From the problem of
the single array [1–5], it is known that, for resonances to occur, one
must properly select the inter-element spacing d, as well as the dipoles’
length 2h and radius a.

Dipole arrays can be effectively analyzed by the semi-analytical
approach of “two-term” theory, originally developed by R. W. P. King
(see [4] for original references). The method is based on an approximate
solution to the N coupled integral equations for the currents of N
mutually coupled dipoles, under the hypothesis that each current can
be expressed as the sum of two terms. The usual sin(k(h− |z|)) term,
as well as the “shifted cosine” term cos(kz)− cos(kh), where k = ω/c,
h is the half-length of each dipole, a is its radius and the dipoles are
z-directed. The coefficients of sin(k(h− |z|)) are given by closed-form,
explicit expressions computable via numerical integrations, whereas
the N coefficients of the shifted cosine are found by solving a N ×N
system of linear algebraic equations. Assuming that kh �= π/2, the
currents are

In(z) =
j2π

ζ0ψdR cos kh
[Vn sin k (h− |z|) + tn (cos kz − cos kh)] ,

n = 1, . . . , N (1)

where Vn is the voltage applied to element n, ζ0 =
√
µ0/ε0 =

376.73 ohms, ψdR is a simple integral containing h and a, and the
coefficients tn are determined by solving the N × N system of linear
algebraic equations

N∑
�=1

Dn�t� =
N∑

�=1

Pn�V�, 1 ≤ n ≤ N (2)

This system can be written in matrix form as [D] {t} = [P ] {V } where
the components of the matrices D and P depend on the characteristics
of the dipoles (length and radius) and on the inter-dipole distance [4].

For our numerical experiments, we consider perfectly conducting
dipoles with length 2h = 1.42 and radius a = 0.058 and circular arrays
consisting ofN = 72 elements arranged around a circle with radius R =
11.46, which gives an inter-element spacing d = 2R sin(π/N) = 1. The
length unit for dimensions and wavelength is chosen arbitrarily (scaling
property of Maxwell equations). To use as a reference, we have initially
applied the “two-term” theory method to a single isolated array.
Fig. 2 shows the computed driving-point conductance G over the wide
wavelength window 3.335 < λ < 3.6. The diagram is characterized
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by a set of distinct sharp peaks corresponding to the resonances (free-
space wavelength λm) of the circular array with an azimuthal order that
increases with decreasing wavelength. These resonances have been well
studied both theoretically and experimentally in previous works [1–12].

Figure 2. Driving-point conductance G versus wavelength for an
isolated circular array with the parameters N = 72, 2h = 1.42,
a = 0.058, d = 1.0. The length unit is arbitrary.

We have subsequently built the linear system (2) of “two-term”
theory for two coupled arrays (Fig. 1) at a minimum distance D = 0.75
and by assuming the symmetrical voltage excitation mentioned before.
Fig. 3 shows the computed driving-point conductance G over the
wavelength window 3.35 < λ < 3.55, in comparison to the single
array case of Fig. 2. It is clear that each resonance of the isolated
array is now split into two lying close and on either side of its initial
position. These are clearly the split resonances which are observed in
any system of coupled resonant cavities and correspond to symmetric
and antisymmetric coupled states (supermodes) with respect to the
middle plane of symmetry. Because of its smoother field variation
between the coupled cavities, the lower resonance (larger wavelength)
is always the symmetric (even) one, while the higher resonance (smaller
wavelength) is the antisymmetric (odd) one which has a field node
exactly on the plane of symmetry. In other words, in an arbitrary m-
th order resonance, we should have λo

m < λm < λ
e
m, where λe

m, λo
m are

respectively the resonant wavelengths of the even and odd supermode.
The picture of supermodes with even and odd field patterns is

verified in our “discrete” system through the computation of the 2N
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dipole currents exactly on the split resonances. Fig. 4 shows the
amplitude ratio and phase difference between the computed complex
currents of elements which are symmetrically positioned with respect
to the symmetry plane x = 0, at the lower (λe

26 = 3.469) and higher
(λo

26 = 3.443) splitm = 26 resonance for a minimum distance D = 0.75
between the two arrays. As expected, the symmetrically positioned
dipoles have, with some tolerance, very close amplitudes and oscillate
with phase difference close to 0 or π (see the computed average values
in Fig. 4), which confirms the nature and identification of even and
odd split resonances in the coupled system.

Figure 3. Driving-point conductance G versus wavelength for two
coupled identical circular arrays with the parameters of Fig. 2, at a
minimum distance D = 0.75. The split m = 26 even, odd resonances
are shown. The dashed line is the conductance of an isolated array.

Figure 5(a) shows the effect of varying the distance between the
arrays on resonance splitting by focusing on a wavelength window
containing the m = 26 resonance. As expected for any system
of coupled resonators, it is evident that the splitting of resonances
becomes larger as the two arrays approach each other, with the odd
and even supermode moving, respectively, to a shorter and longer
resonant wavelength due to the need for a faster or slower, respectively,
space variation of the field pattern in the coupling region between the
two arrays. The dependence of the resonant wavelengths versus the
minimum distance are given in Fig. 5(b) where it is noted that the
detuning of the split supermodes from the resonance of the single array
is not equal.
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(a)

(b)

Figure 4. Amplitude ratio (dots) and phase difference — divided by
π — (circles) between currents of symmetrically positioned dipoles,
with respect to the symmetry plane x = 0, in two coupled arrays with
D = 0.75 at the lower (λe

26 = 3.469) (a) and higher (λo
26 = 3.443), (b)

m = 26 split resonance. The average amplitude ration is 1.08 (a) and
1.21 (b) and the average phase difference is −0.06π (a) and −0.88π
(b).
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(a)

(b)

Figure 5. (a) Driving-point conductance G versus wavelength in the
vicinity of the m = 26 split resonance (λ26 = 3.460) for two coupled
identical circular arrays with the parameters of Fig. 2 at different
minimum distances D. (b) Resonant wavelengths λe

26, λ
o
26 versus D.

The dashed horizontal line is the resonant wavelength λ26 for isolated
arrays (D → ∞).

3. THE OPTICAL COUNTERPART: COUPLED TW
RESONATORS

Owing to the cylindrical symmetry, the modes in an isolated TW
optical resonator are double-degenerate with a sin / cos(mθ) azimuthal
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field variation. This degeneracy is removed when two identical
resonators are brought close together and four non-degenerate coupled
modes (supermodes) appear, resulting from the even or odd field
symmetry with respect to the two symmetry axes x, y of the structure.
We will denote these symmetries as ex,y and ox,y. The pairs (exey,
oxey) and (exoy, oxoy) of the supermodes with the same symmetry
with respect to the y axis are nearly degenerate with resonant
frequencies that can hardly be distinguished and are called bonding and
antibonding supermodes, respectively. The bonding and antibonding
supermodes of a coupled pair of resonators are manifested as split
resonances of the isolated resonators with a frequency splitting that is
proportional to the coupling strength.

a b 

a'b'

κ

Figure 6. Wave coupling in two
coupled TW optical resonators.
The vertical dashed line shows the
usual way to excite the system
through a bus waveguide.

ab

d c

θ1 θ2

Figure 7. Superposition of
counter-propagating waves for the
formation of supermodes in two
coupled TW optical resonators.

Figure 6 shows the simple standard model that is usually used
to explain the mode splitting in coupled TW optical resonators. The
coupling of waves is considered to exist only along an infinitesimally
long part of the coupling region and is expressed through the matrix
equation (

a
b

)
=

(
τ −jκ

−jκ τ

) (
a′

b′

)
(3)

where a, b and a′, b′ are the complex field amplitudes of the waves
emerging from and entering the coupling region and τ(ω), κ(ω) are
frequency dependent self- and cross-coupling coefficients which are real
for phased-matched coupling and satisfy τ2 + κ2 = 1 for negligible
losses. The propagation around the resonators is expressed by a phase
shift φ, i.e., a′ = ae−jφ and b′ = be−jφ, which is called the round-
trip phase and is defined by φ = β2πR = ωneff 2πR/c, where β
is the propagation constant and neff (ω) is the effective index of the
rotating mode and R the resonator radius. Using the last equations
into Eq. (3) it is easy to find the resonant condition for the bonding
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(a = b) and antibonding (a = −b) supermodes: sinφ(ω) = ∓κ(ω)
or φ(ω) = φ(ω0) ∓ sin−1[κ(ω)], where φ(ω0) = 2mπ is the resonance
condition for the isolated resonator. In cases where the variation of
neff and κ with frequency can be neglected — which are usually the
cases of weak inter-resonator coupling — this condition reveals the
symmetrically split resonant frequencies f = f0 ∓ δf where δf is
proportional to the coupling coefficient κ. Note that when the system
is excited by an adjacent bus waveguide (see Fig. 6) coupled to one
resonator with coefficient κ′, the resonance condition is modified to
cosφ = τ (1 + τ ′)2 /(4τ ′) which reduces to sinφ = ∓κ for κ′ � 1.

The supermodes can be expressed as linear combinations
of counter-rotating waves under the respective condition, by
appropriately choosing the corresponding weights so that the desired
symmetry with respect to the axes is met. Note that this approach
cannot distinguish the resonant frequencies of the previously mentioned
degenerate bonding and antibonding mode doublets, which therefore
share the same condition. Referring to Fig. 7, the condition sinφ = −κ
corresponds to the bonding supermodes where a = b and c = d. The
exey and oxey bonding supermodes follow from the additional choice
c = a and c = −a, respectively. Similarly, the condition sinφ = +κ
corresponds to the antibonding modes (oy) where a = −b and c = −d.
The exoy and oxoy antibonding supermodes follow from the additional
choice c = a and c = −a, respectively.

We now focus on the field variation of the supermodes with even
symmetry with respect to the x axis (ex), by choosing a = c = 1/2
which also normalizes the maximum field amplitude to unity. The total
field at an azimuthal position θ in the right resonator is given by

E(θ) = aej(φ/2−βRθ) + ce−j(φ/2−βRθ) = cos
[
φ

(
θ

2π
− 1

2

)]
(4)

and is the expression of a standing wave. Eq. (4) holds for the
bonding (exey) and the antibonding (exoy) supermodes provided that
the correct corresponding round-trip phase φ = φ0 ∓ sin−1(κ) on
resonance is used. The field in the left resonator is obviously symmetric
or antisymmetric to that of Eq. (4), while the ox versions of these
supermodes simply have the sine instead of the cosine function in
Eq. (4). Note also that, since this simple model does not explicitly
define the field exactly at the coupling region, one should keep in mind
that Eq. (4) is valid for angles ε < θ < 2π−ε where 2ε is a small angle.

Figure 8 shows an example of the field amplitudes of the bonding
and antibonding ex supermodes, where we have deliberately chosen a
small azimuthal order m = 4 and a large coupling coefficient κ = 0.8
to exaggerate the difference between the two patterns. It is seen that
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the odd supermode varies a little faster than the even one, which is
due to the difference between their round-trip phases (φ = 2mπ± δφ).

Figure 8. Field amplitude versus azimuth in a TW optical resonator
for the exey bonding (solid line) and the exoy antibonding (dashed line)
supermode and the example parameters m = 4, κ = 0.8.

Based on the mentioned analogy between a circular loop array and
a TW optical resonator, it is reasonable to expect that the current of
the elements of an array in the structure of two coupled arrays will
follow a pattern similar to the field pattern in a TW resonator in the
structure of two coupled cavities which is given by Eq. (4). In order to
investigate this analogy, we will use the dipole currents at the split m-
th order resonances of the coupled loop arrays that we have computed
in Section 2 using the two-term theory and try to match it with a
sampled version of Eq. (4) at the angles θi of the elements. The goal
is therefore to find the round-trip phase φ which minimizes the cost
function

C(φ) =
N∑

i=1

∣∣∣∣Ê(θi) − cos
[
φ

(
θi
2π

− 1
2

)]∣∣∣∣
2

(5)

where Ê(θi) are the dipole currents normalized by the current of the
dipole at θ = π, i.e., Ê(θi) = E(θi)/E(π). As in the case of mode
splitting in optical resonators, the round-trip phases of the closed-
loop arrays are expected to satisfy φ(λe

m) < 2mπ < φ(λo
m) and their

difference will be decreasing with the minimum distance between the
two arrays. At infinite distance, the round trip phase of the isolated
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array should be exactly φ = 2mπ as the current pattern will follow the
known formula cos(mθi) = cos(2πm× i/N).

Figure 9 shows the variance of cost function C(φ) at the odd
m = 26 resonance of the two coupled arrays of Section 1 at a distance
D = 3.0, occurring at the wavelength λo

26 = 3.459. There is clearly
a very sharp minimum close to the value φ ≈ 2π × 26, which justifies
our expectations from the previous discussion. The other minima
at higher values of φ reveal essentially the higher harmonics of the
sampled sinusoidal signal cos(mθi). Indeed, the sequence of currents
Ê(θi) can be viewed as a sampling of the signal cos(26θi) with a rate
of 72 samples/period. According to the sampling theorem the sampled
signal is composed by an infinite number of harmonics with frequencies
72n±26 cycles/period (n integer). All harmonics pass from the points
(θi, Ê(θi)) of the sampled signal and that is the reason why they appear
as minima of the cost function. Letting n = 0, 1, 2, . . ., we obtain the
values 26, 46, 98, 118, 170, . . . which are indeed the higher φ/(2π)
values close to which the other minima of Fig. 9 occur.

Figure 9. Cost function in logarithmic scale at the odd m = 26
resonance of two coupled arrays at a minimum distance D = 3.0
(λo

26 = 3.459).

By focusing on the φ ≈ 2π×26 minimum and by applying a typical
function minimization algorithm, we accurately determine the round-
trip phase as φ(ωodd) = 2π×26+0.168. In Fig. 10, we have plotted the
continuous function of Eq. (4) for φ = φ(ωodd) in comparison with the
actual dipole currents computed with the “two-term” theory method.
The agreement between the real part of the currents and the standing-
wave curve is nearly excellent, while the imaginary part of the currents
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is very small as it should be.
Table 1 shows the results for the round-trip phase at the even and

odd resonances and their % difference over the resonant value 2π× 26
of the isolated array, for several minimum distances between the two
arrays. As expected, this difference decreases with increasing D.

In order to further investigate the analogy with the coupled optical
resonators, some connection between the round-trip phase and the
inter-array coupling strength should also be sought for two coupled
arrays. A problem arises because the radiative character of coupling
between dipoles complicates the task of defining a coupling coefficient
between the arrays, in contrast to the well established definition of
κ between optical resonators where the coupling is based on the
evanescent field ([17] and references therein). To this end, we will here
investigate the success of two trial-definitions of inter-array coupling
coefficient in predicting the computed round-trip phase split values,
and will avoid giving a final explicit definition, which is rather difficult
— if not impossible — due to the difference in the coupling mechanism
in optical and RF systems.

From the linear system of Eq. (2) follows that the mutual coupling
coefficient between elements n and m is C(n,m) = D(n,m)/D(n, n).
The simplest definition for an inter-array coupling coefficient would
then be to use just the coefficient between the nearest elements of
the two arrays, i.e., those at the angles θ1 = θ2 = 0◦ (see the Fig. 7

Figure 10. Real (dots) and imaginary (circles) part of dipole currents
at the odd m = 26 resonance two coupled arrays at a minimum
distance D = 3.0 (λo

26 = 3.459) in comparison with Eq. (4) for
φ(ωodd) = 2π × 26 + 0.168.
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for the definition of the angles). The result is shown in Fig. 11 in
comparison with the above computed round-trip phase differences on
even and odd split resonances for several minimum distances between
the two arrays. There is some good agreement between the curves for

Figure 11. Comparison between the round-trip phase difference
δφ = φ(λe,o

26 ) − 2π × 26 of the even and odd m = 26 supermode (dots)
and the corresponding magnitude (with a negative sign in the even
case) of the coupling coefficient between the nearest elements (see the
inset) of the two arrays (circles).

Table 1.

D φ(λe
26) φ(λo

26) δφ/φ(λ26)(%)
0,75 2π × 26 − 1, 373 2π × 26 + 2, 715 2,50
1,00 2π × 26 − 0, 979 2π × 26 + 1, 832 1,72
1,25 2π × 26 − 0, 722 2π × 26 + 1, 266 1,22
1,50 2π × 26 − 0, 509 2π × 26 + 0, 869 0,84
1,75 2π × 26 − 0, 373 2π × 26 + 0, 638 0,62
2,00 2π × 26 − 0, 285 2π × 26 + 0, 456 0,45
2,25 2π × 26 − 0, 217 2π × 26 + 0, 346 0,34
2,50 2π × 26 − 0, 148 2π × 26 + 0, 258 0,25
2,75 2π × 26 − 0, 129 2π × 26 + 0, 215 0,21
3,00 2π × 26 − 0, 087 2π × 26 + 0, 168 0,16
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minimum distances D > 2.0.
A more involved definition of inter-array coupling coefficient is

obtained by borrowing the model of an optical variable coupling
coefficient coupler [23] which is usually applied to estimate the coupling
coefficient between TW optical resonators [17]. According to this
model, the mode amplitudes along the interacting region of length
L, A1(z), A2(z) satisfy two coupled differential equations dA1/dz +
jβA1 + jκ(z)A2 = 0 and dA2/dz + jβA2 + jκ(z)A1 = 0 where β is
the propagation constant and κ(z) the variable coupling coefficient.
From these equations, follows that the coupling coefficient is equal to
the resulting total self- and cross-coupling coefficients are respectively
τ = cos(Φ) and κ = sin(Φ) where Φ =

∫
L κ(z)dz. By applying this

concept in the coupled circular arrays with discrete currents, it is
reasonable to define the coupling coefficient at an angle θn (see Fig. 7)
through the difference κ(θn) = C(θn, θn)−C(θn −∆θ, θn) where ∆θ is
the angular inter-element step. The integral of κ(θ) over the interaction
region should then become a discrete sum

Φ =
∑
n

κ(θn) =
∑
n

C(θn, θn) − C(θn − ∆θ, θn) (6)

Figure 12. Comparison between the round-trip phase difference
δφ = φ(λe,o

26 ) − 2π × 26 of the even and odd m = 26 supermode
(dots) and the corresponding magnitude (with a negative sign in
the even case) of the coupling coefficient sin(Φ), with Φ given by
Eq. (6) (circles). The inset shows the inter-element coupling coefficients
involved in the formula of Eq. (6).
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where n covers the elements in the interacting region. Here we have
taken into account the elements over the closer semicircles of the two
arrays, |θ1,2| < 90◦. The result of definition (6) is shown in Fig. 12 in
comparison with the computed round-trip phase differences of Table 1.
There is clearly some agreement, especially in the case of the odd
supermode for minimum distances D > 1.5.

4. CONCLUSIONS

This paper has applied the “two-term” method to study the system
of two coupled circular loop arrays of dipoles. As expected for
any coupled system of wave resonators, the spectral profile of the
super-array is characterized by the coupling-induced splitting of
the well-studied resonances of the isolated array into symmetric
and antisymmetric supermodes with even and odd dipole current
distribution along the arrays with respect to the mirror symmetry
plane. The circular geometry of these RF cavities brings this system
in direct analogy with coupled TW optical cavities, such as WG or
microring resonators. By borrowing the standard resonance splitting
model from the optical resonator theory, this analogy was numerically
investigated and very satisfactory agreement was found between the
dipole current distribution in the arrays and the mode profile in TW
optical resonators as well as between the dependence of resonance
splitting on the coupling strength in the two cases. The reported
results are evidence of the underlying connection between the two
structures, both being eletromagnetic cavities of circular geometry
cavities, stimulating some interest to the direction of incorporating
techniques and concepts from the field of optical resonators in order to
understand more complex architectures of RF arrays.
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