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Abstract—This paper studies the correlation of a receiving thin
dipole with an arbitrary load in both anechoic chamber (AC) and
reverberation chamber (RC). In both cases, the method of moments
is employed to calculate the current distributions along a thin dipole
induced by external fields. In AC, a plane wave with a fixed incident
angle and polarization is illuminated on the dipole; whereas in RC, the
field is represented by an appropriate superposition of many incident
plane waves with stochastic incident angles, polarizations and phases.
Numerical results for the current distributions of a thin dipole with
different loads and electrical lengths are presented and discussed in
both chambers. It is demonstrated that the ratios with respect to
current magnitudes at the arbitrary load of the thin dipole between AC
and RC are determined by its directivity. In particular, the ratios with
respect to current magnitudes along the entire dipole whose electrical
length is less than half a wavelength are nearly constants regardless
of the terminating load, which indicates that results obtained in both
chambers are well correlated.

1. INTRODUCTION

Reverberation chamber (RC) is nowadays widely employed in
many applications including aircraft, automotive, and wireless
communication systems due to the availability of several military
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and commercial standards, which provide measurement procedures for
electromagnetic susceptibility and emission tests [1–8]. Basically, the
RC is a three-dimensional metallic cavity containing rotation tuners,
which are well-stirred to create a statistically uniform electromagnetic
field environment. The total field in the chamber can be represented
as many plane waves stochastically excited and superimposed whose
distributions over incident angle, polarization, and phase are uniform.

Recently, specific effort has been made on the issue with
respect to the correlation between an RC and conventional anechoic
chamber (AC). This research topic has significantly constructive
and standardized values, i.e., the experimental methods could
be interchanged and selected where appropriate in terms of the
different category of equipment under test (EUT) and its specific
working electromagnetic environment applying the existing correlation
coefficients between AC and RC. A statistical correlation [9] between
AC and RC was demonstrated to be possible in automotive
applications. A statistical theory [10] for assessing the directivity of
emitters based on the electrical size of the device was reported. Test
article response and its uncertainty [11] were compared in anechoic
and reverberation chambers. A better correlation [12] based on a
statistical approach could be obtained by applying the transfer function
of electronic devices.

From published papers, it is seen that no general conclusion has
been drawn with respect to the correlation of test results in both
AC and RC. It appears apparent that some theoretical analysis is
required to characterize this correlation more accurately and to provide
basic insight into this correlation. In this paper, a receiving straight
thin dipole with an arbitrary load is selected to study its current
distributions both in AC and RC. Our objective is not only to model
the current distributions along a thin dipole in both chambers, but
also to find the possible correlation between AC and RC from the
theoretical point of view.

The organization of the present paper is as follows. In Section 2,
the theoretical formulation is briefly described. In Section 3, numerical
results are presented and discussed. Conclusions about the correlation
of AC and RC are drawn in Section 4.

2. FORMULATION

In this section, we consider a receiving antenna placed in anechoic and
reverberation chambers. The simple case of a perfectly conducting
thin dipole with an arbitrary load will be considered here though
it may be easily extended to other situations. We will employ the
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dependently extracted method [13] to create a set of plane waves with
an uniformly distributed random incidence to simulate the statistically
uniform electromagnetic environment in an RC.

Figure 1 shows a straight thin dipole with length l and radius a
center-loaded by an arbitrary impedance ZL. Here we are interested
in finding the correlation coefficient between current magnitudes along
the dipole induced by external fields in anechoic and reverberation
chambers.
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Figure 1. Geometry of a thin dipole with an arbitrary load.

2.1. Dipole in Anechoic Chamber

Figure 2 shows the thin dipole placed in an anechoic chamber and
illuminated by a plane wave of certain incident angle and polarization.
Following Eq. (14) in [14], it is known that the total receiving current
Ir(z) along the thin dipole with an arbitrary load is represented by

Ir(z) = Ir
0(z) − Z0 · ZL

Z0 + ZL
Ir
0(0) · It(z) (1)

where Ir
0(z) refers to the receiving current distribution in the absence of

the load (ZL = 0), It(z) denotes the transmitting current distribution
excited by voltage generator of unit strength (1 V/m) and Z0 is the
feed-point impedance of the thin dipole.

Using the method of moments [15–19], one can solve the current
distributions Ir

0(z) and It(z) along the thin dipole, respectively.
Following the procedures used in [20], one can easily obtain the
following

[I] = [Z]−1 [V ] (2)
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where

Zmn = jωµ∆ln · ∆lmψ(n,m) +
1
jωε

[
ψ(n+,m+)

− ψ(n−,m+) − ψ(n+,m−) + ψ(n−,m−)
]

(3)

ψ (n,m) =




1
2π∆ln

log
(

∆ln
a

)
− jk

4π
n = m

e−jkRmn

4πRmn
n �= m

(4)

[V0] =




Ēi(1) · ∆l̄1
Ēi(2) · ∆l̄2
Ēi(3) · ∆l̄3

...
Ēi(N) · ∆l̄N




[Vt] =




0
...
1
...
0




(5)

V0 and Vt are the voltage excitations of the receiving dipole with no
load and the transmitting dipole, respectively.

iE

LZ
k

Figure 2. A thin dipole illuminated by a plane wave with a fixed
incident angle and polarization in AC.

For a plane wave incidence in AC shown in Fig. 2, we set

Ēi(n) = Ē0e
−jk̄·r̄ (6)
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where the propagation constant k̄ is

k̄ = −k(sin θ cosφâx + sin θ sinφây + cos θâz) (7)

and Ē0 is the electric field intensity of the incident plane wave. In AC,
the obtained current magnitude should be normalized by the electric
field intensity around the dipole. In this paper, we set E0 = 1 V/m.

It is well known that the effective area Ae of an antenna can be
expressed as [21]

Ae(Ω) =
λ2

4π
D(θ, φ)pmηa (8)

where p is the polarization mismatch, m the impedance mismatch,
ηa the antenna efficiency, and D(θ, φ) the antenna directivity. The
received power at the load ZL of the thin dipole shown in Fig. 2 is
then

(PL)AC =
E2

AC

η
Ae =

E2
AC

η

λ2

4π
D(θ, φ)mηa (9)

where E2
AC/η can be interpreted as the scalar power density, p = 1

is assumed here because only the polarization of the incident wave in
the plane containing its propagation direction and dipole is considered.
Thus, the normalized received power of the thin dipole with respect to
the term of E2

AC in AC is as follows

((PL)AC)norm =
(Pr)AC

E2
AC

=
1
η

λ2

4π
D(θ, φ)mηa (10)

2.2. Dipole in Reverberation Chamber

The electric field Ē in a source-free working volume of an RC can
be represented as an integral of plane waves over all real solid
angles [22, 23]

Ēi(r̄) =
∫
4π

Ē0(Ω)e−jk̄·r̄dΩ (11)

where the solid angle is shorthand for the elevation angle θ and azimuth
angle φ, and dΩ = sin θdθdφ. Vector k̄ is the propagation vector of the
same expression as (7).

Define a new Cartesian coordinate system (âx′ , ây′ , âz′) with the z′

axis in accordance with the propagation vector k̄. The new and original
coordinate systems are related to each other through a rotation matrix
[T ] in the following form

 âx′

ây′

âz′


 = [T ]


 âx

ây

âz


 (12)



110 Zhong et al.

where

[T ] =


 cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0
sin θ cosφ sin θ sinφ cos θ


 (13)

Due to the fact that the plane wave spectrum Ē0(Ω) is a random
variable, it can be written in the new coordinate system as defined
above

Ē0(Ω) =
∣∣Ē0

∣∣ (
âx′ cosα+ ây′ sinα

)
(14)

where α is the polarization angle of the electric field in the plane that
is perpendicular to k̄. Utilizing the rotation matrix (13), (14) can be
easily expressed in the original coordinate system as follows

Ē0(Ω) =
∣∣Ē0

∣∣ [(cos θ cosφ cosα− sinφ sinα)âx

+(cos θ sinφ cosα+ cosφ sinα)ây − (sin θ cosα)âz] (15)

For a statistically uniform field as created in an RC, the angular
spectrum is considered to be a random variable due to the different
boundary conditions, which depend on different stirrer positions. For
calculating the current distribution along a receiving thin dipole,
the theory of probability is employed. That is to say, a certain
number of random plane waves with stochastic phases are assumed
to impinge upon the dipole antenna simultaneously, for which the
vector propagation direction and the angular spectrum are random
but orthogonal.

Referring to Fig. 3, the random parameters are angles φ and
θ defining the propagation direction of the incident plane wave,
polarization angle α and the phase of the incident wave ξ. Following
the procedure in [13], an uniform distribution of the extracted points
can be acquired on the spherical surface. The average total field within
the working volume of an RC [24] can be calculated in terms of the
superposition of N random plane waves with equal magnitude E0 in
the following

〈|ERC |〉 =
15
16

√
π

3

√
N |E0| (16)

Herein, M simulations are conducted in order to simulate M
different stirrer positions in a real RC. Each simulation consists of the
superposition of N random plane waves whose incidences, polarizations
and phases are all stochastic. Following various validations [13] and
applying the law of large numbers, a compromise is made between
accuracy and computation time with respect to the choices of N and
M over the whole frequency band of interest including the lowest
usable frequency (LUF). Here, we choose N = 200 and M = 500,
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Figure 3. One random plane wave in RC. The vector propagation
constant and the electric field polarization are orthogonal.

which can sufficiently ensure convergent results within the acceptable
computation time. In RC, numerical normalizations are made by
taking the ratio between the current magnitudes and the average total
field around the dipole. For computational convenience, the total field
is obtained applying (16) with E0 = 1 V/m.

Through the analysis and superposition assumptions above, the
induced current along the thin dipole with an arbitrary load employing
the numerical method can be expressed as follows

|IRC | =
1
M

M∑
1

∣∣∣∣∣
N∑
1

Īe

∣∣∣∣∣ (17)

where Īe is the vector current along the thin dipole illuminated by each
random incident plane wave.

In this paper, 〈〉 represents an ensemble average over stirrer
positions. Referring to [22], the average received power at the
terminating load of the thin dipole in RC is in the following

〈PL〉RC =

〈
|ERC |2

〉
η

〈Ae〉 =
|ERC |2

η

λ2

8π
mηa (18)

where
〈
|ERC |2

〉/
η can be interpreted as the average scalar power
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density. Thus, the normalized average received power of the thin dipole
with respect to the term of

〈
|ERC |2

〉
in RC is as follows

(〈PL〉RC)norm =
〈Pr〉RC〈
|ERC |2

〉 =
1
η

λ2

8π
mηa (19)

2.3. Current Ratio

Combining (10) and (19) yields the normalized received power ratio at
the load of the thin dipole between AC and RC.

((PL)AC)norm

(〈PL〉RC)norm
= 2D(θ, φ) (20)

Therefore, using the expression of PL = I2
L · ZL, it is apparent that

((IL)AC)norm

(〈IL〉RC)norm
=

√
2D(θ, φ) (21)

Herein, (IL)norm refers to the normalized current magnitude at the load
of the thin dipole and their ratio is independent of the terminating load
impedance ZL.

3. NUMERICAL RESULTS

Figures 4, 5, and 6 present the normalized current distributions
along a thin dipole of different electrical lengths with different loads
(conjugate-matched, open-circuited and short-circuited ones) in AC
and RC, respectively. By default, the current magnitudes in this paper
refer to the normalized values and the direction of the incident wave in
AC is chosen to be perpendicular to the thin dipole unless otherwise
stated. In Figs. 5(b)–(c), we compare our numerical results with those
obtained by IE3D and the agreement between them is very good. From
Figs. 4 and 5, it is found that the current magnitude values along the
length of dipole in AC are always larger than the ones in RC when the
electrical length of the dipole is less than half a wavelength.

Table 1 presents the current magnitude ratio at the load of a thin
dipole illuminated by signals with different frequencies (i.e., different
electrical lengths) between anechoic and reverberation chambers. From
the table, it is evidently shown that our numerical results are in
excellent agreement with theoretical results obtained in [22]. It should
be mentioned that the current ratio at the load is independent upon
the dipole load and determined by the directivity of the dipole.
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Figure 4. Normalized current distributions along a thin dipole in
AC and RC (l/2a = 1e3, l = 0.08λ, Z0 = R − jX, R = 1.181 Ω,
X = 2691 Ω). (a) ZL = Z∗

0 . (b) ZL = 1e10 Ω. (c) ZL = 0 Ω.

Table 1. Normalized current magnitude ratios at the load of a thin
dipole between AC and RC.

Frequency (MHz) 80 250 500 750 1000 1250

Electrical Length 0.08λ 0.25λ 0.50λ 0.75λ λ 1.25λ

Directivity (D) 1.50 1.55 1.67 1.90 2.41 3.28
√

2D(Theoretical Result) 1.73 1.76 1.83 1.95 2.20 2.56

Our Numerical Result 1.74 1.79 1.87 1.98 2.30 2.75

Figure 7 depicts their normalized current magnitude ratios
between AC and RC along the dipole terminated by different loads
with respect to different electrical lengths of the dipole. It is easily
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Figure 5. Normalized current distributions along a thin dipole in
AC and RC (l/2a = 1e3, l = 0.5λ, Z0 = R + jX, R = 80.52 Ω,
X = 40.77 Ω). (a) ZL = Z∗

0 . (b) ZL = 1e10 Ω. (c) ZL = 0 Ω.

seen that the ratios are constants, approximately 1.74 for l = 0.08λ
and 1.87 for l = 0.5λ, along the entire length of the dipole when the
electrical length of a dipole is less than half a wavelength. It is easy
to understand that the ratio is a constant for a particular short dipole
because of the nearly sinusoidal variation of the current distribution
along a short dipole. Furthermore, this constant is determined by the
directivity of the thin dipole at the elevation angle of the incident plane
wave in AC.

From Fig. 7(c), it is apparently seen that current magnitude ratios
along the length of a full-wavelength dipole are no longer constant,
which mainly depends upon the different terminating loads. Similarly
to the results given in [14], the current distribution along a full-
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Figure 6. Normalized current distributions along a thin dipole in AC
and RC (l/2a = 1e10, l = λ, Z0 = R−jX, R = 22896 Ω, X = 16801 Ω).
(a) ZL = Z∗

0 . (b) ZL = 1e10 Ω. (c) ZL = 0 Ω.

wavelength dipole with a short-circuited load is shown in Fig. 8 in the
case of different incident angles. For normal incidence, the peak current
magnitude exists at the center of the dipole. From Fig. 8, it is easily
found that the current distribution along the full-wavelength dipole
will change when the incident angle varies and this is mainly due to
the reversed phases along the dipole. As we know, the electromagnetic
environment in RC consists of many random incident waves, which
lead to a current dip at the center of the thin full-wavelength dipole
with a short-circuited load, unlike that under the normal incidence in
AC, as shown Fig. 6(c). Therefore, the ratio of the current magnitudes
along a thin full-wavelength dipole is no longer a constant. However,
the current magnitude ratios at the load of a full-wavelength dipole
are still constant of 2.3, as shown in Table 1, which is determined by
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Figure 7. Normalized current magnitude ratios along a thin dipole in
AC and RC. (a) l = 0.08λ. (b) l = 0.5λ. (c) l = λ.

the directivity. Actually, it is easy to find that the current magnitude
ratio along the length of a thin dipole between AC and RC began to
be not a constant as the electrical length of dipole is more than half a
wavelength.

Finally, the current distributions along a thin half-wavelength
dipole with a conjugate-matched load illuminated by different
incidences in AC and compared with that in RC are provided in Fig. 9.
For incidences not perpendicular to the thin dipole, the induced current
distributions along the thin dipole are shown to be asymmetric as
expected, which leads to the fact that the current magnitude ratios
along the thin dipole between AC and RC are no longer constants, as
shown in Fig. 10.

It is well known the directivity of a half-wavelength dipole can be
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Figure 8. Normalized current distributions along a thin dipole in AC
in the case of different incident angles (l/2a = 1e10, l = λ, ZL = 0 Ω).
(a) Magnitudes. (b) Phases.
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Figure 9. Normalized current
distributions along a thin dipole
in AC with different incidences
and RC (l/2a = 1e3, l = 0.5λ,
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Figure 10. Normalized current
magnitude ratios along a thin
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0 ).

approximated using Eq. (2.18) in [25]

D = D0 sin3 θ = 1.67 sin3 θ (22)

where θ is the elevation angle. Therefore, varying the direction of
incident wave in AC, different current magnitude ratios at the load of
the half-wavelength dipole between AC and RC will be obtained due
to the different directivity at the specific elevation angle.
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Table 2 presents the normalized current magnitude ratios at the
terminating load of a thin half-wavelength dipole with a conjugate-
matched load at different incident angles between AC and RC, which
validates the conclusions drawn in this paper. It is clearly seen that
the maximum current magnitude ratio will be obtained if the direction
of the incident wave is perpendicular to the thin half-wavelength dipole
in AC. In addition, there exists a relatively acceptable error between
our numerical result and theoretical result when the incidence is near
grazing, which might be due to the approximated directivity formula.

Table 2. The normalized current magnitude ratios at the load of a
thin half-wavelength dipole with a conjugate-matched load in AC with
different incidences and RC.

Incidence in AC 90◦ 60◦ 30◦

Directivity (D) 1.67 1.08 0.21√
2D(Theoretical Result) 1.83 1.47 0.65
Our Numerical Result 1.87 1.51 0.77

4. CONCLUSIONS

In this paper, the current distributions along a receiving thin dipole
inside AC and RC have been presented and discussed. It has been
demonstrated that the ratios with respect to current magnitudes at
the arbitrary load of the thin dipole between AC and RC have been
determined by the directivity of the thin dipole. In particular, the
current magnitude ratios along the entire dipole less than half a
wavelength are nearly constants, which indicates that results obtained
in AC and RC are well correlated.
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