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Abstract—This paper presents a closed form solution for the electrical
potential perturbation of a perfectly insulating flat circular disc
embedded in a homogeneous half-space in a uniform primary electric
field. This has applications to the detection of insulating underground
targets such as hydrocarbon reservoirs or plastic mines, as well as to
the electrical properties of composite materials. The solution method
is an adaptation of Weber’s method for the potential around a charged
conducting disk. It yields closed form analytic solutions for the electric
and magnetic fields and by straightforward numerical integration, an
easily evaluated numerical solution for the electric potential and an
explicit solution for the electrical resistivity of a composite material
consisting of a dilute concentration of such embedded disks in an
otherwise uniform conductor.

1. INTRODUCTION

An insulating object in a conducting medium perturbs the flow of
an imposed current density. Such perturbations are important in
a number of fields: the subsurface imaging by electrical methods
of insulating underground structures such as hydrocarbon reservoirs
(on the large scale) or plastic mines (on the small scale), or the
computation of the electrical resistivity of composite materials. There
are solutions for related problems for a disk more conductive than
its surroundings in the literature, such as closed form solutions [20]
for a perfectly conducting disk in a uniform normal electric field in
free space, series expansions [16, 13] for a conductive disk subject
to electromagnetic wave excitation, or solutions based on short-
wavelength approximations [9]. Insulating disks in a conductive
medium do not seem to have received similar analytic attention,
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although iterative techniques have no trouble dealing with them
analytically, even in quite complex situations (e.g. [6])

In general, the availability of modern computing power means
that numerical solutions for the electrical responses of realistically
complex objects of this type are most efficiently done using (surface
or volume) finite element methods. However, to demonstrate the
essential properties of such solutions, as well as to calibrate and test
such numerical solvers, it is useful to have simple closed form analytic
or semi-analytic solutions as test cases. I present such a solution
here: the electrical potential perturbation of a perfectly insulating
flat circular disc embedded in a homogeneous half-space in a uniform
primary electric field.

2. PROBLEM DEFINITION

2.1. The Geometry

Let the disc radius be a. Without loss of generality, let it be
centred at the coordinate origin r = 0 with surface normal in the
z direction. Assume that in the absence of the disc, the source
would, in the vicinity of the coordinate origin, generate a uniform
current density j0 (the “primary” current current density), which
exists in the region of interest (that is, out to several disc radii
from the origin). For a sufficiently small disc, or distant source,
this will be a good approximation to reality. The current density
parallel to the disc surface will be unperturbed by the disc, and
thus, without loss of generality, we can assume it to be zero, and the
background current to be of uniform amplitude j0 and directed in the
−z direction (corresponding to a distant current source directly above
the origin). Defining the electrical conductivity of the medium as σ,
the corresponding primary electric potential Φ(P )(x, y, z) is

Φ(P ) =
j0z

σ
(1)

2.2. The Boundary Conditions

The total electric potential Φ must obey Laplace’s equation in the
medium, and satisfy three boundary conditions. These are 1) that the
potential tend to Φ(P ) as r goes to infinity, and 2) that the normal
current density at the surface of the disk is zero. That is,

lim
|r|→∞

Φ(r) = Φ(P ) (2)
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∂Φ
∂z

∣∣∣∣
z=0

= 0 for ρ ≡
√

x2 + y2 ≤ a (3)

3. FORMULATION OF THE PROBLEM FOR THE
SECONDARY POTENTIAL

It is convenient to split Φ into that which the current source would
produce in the homogeneous half-space in the absence of the disk (the
primary potential Φ(P ) = z), and the change produced by introducing
the disk (the “secondary” potential Φ(S)). Each of these individually
must satisfy Laplace’s equation.

The primary potential satisfies boundary condition (2) but not (3).
Its current density normal to the disk is not zero but −j0. Therefore,
in order that the total potential Φ satisfy the required boundary
conditions (2) and (3), it is necessary that the secondary potential
satisfies the boundary conditions

lim
|r|→∞

Φ(S)(r) = 0 (4)

∂Φ(S)

∂z

∣∣∣∣
z=0

= −j0z

σ
for ρ ≤ a (5)

Because the secondary potential tends to that of a point current dipole
at large distances, we expect Φ and |∇Φ| to fall off as r−2 and r−3

respectively as r tends to infinity.
By standard methods [14], a solution for Φ(S) that satisfies (4)

with the required azimuthal symmetry is

Φ(S) =
∫ ∞

0
A(λ)e−λ|z|J0(λρ)dλ (6)

The vertical current density (normal to the disk), on the surface of the
disk, which is generated by this potential, is

jz = σEz = −σ
∂Φ(S)

∂z

∣∣∣∣
z=0

= σ

∫ ∞

0
λA(λ)J0(λρ)dλ (7)

To solve the problem, our objective now is to find the function
A(λ) such that boundary condition (5) is also satisfied, namely that
for

j0

σ
= const. =

∫ ∞

0
λA(λ)J0(λρ)dλ 0 < ρ < a (8)
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4. THE SOLUTION FOR THE SECONDARY
POTENTIAL

It is tempting to closely follow Weber’s [20] original procedure for
the conducting disk (see [4, 14, 19]), but this fails because it does
not generate a solution which falls off sufficiently rapidly at infinity.
Therefore instead of utilizing just the integral I1(ρ) (11.4.37 in [1] with
μ set to zero) defined by∫ ∞

0

sinλa

λ
J0(λρ)dλ =

π

2
, 0 < ρ < a (9)

= arcsin
a

ρ
, 0 < a < ρ (10)

as in the conducting disk problem, as Weber did, we utilize a linear
combination of it and the integral I2(ρ) (11.4.35 in [1] again with μ
set to zero) ∫ ∞

0
cos λaJ0(λρ)dλ = 0, 0 < ρ < a (11)

=
1√

ρ2 − a2
, 0 < a < ρ (12)

It is easily seen from (11) and (9) that I1(ρ)−aI2(ρ) equals a constant
π/2 for ρ < a. It is also easily shown that this falls off as ρ−3 as ρ tends
to infinity (see the section below on the equivalent dipole moment for
details), and can be used to represent Ez for z = 0. It therefore follows
that the function A(λ) that we require in (8) is

A(λ) =
2j0

πσ

(
sinλa

λ2
− a cos λa

λ

)
(13)

The uniqueness of solutions of Laplace’s equation for completely
specified boundary conditions assures us that this is the correct
solution.

The required solution for the secondary potential Φ(S)(ρ, z)
everywhere is therefore, as a Hankel transform,

2j0

σπ

∫ ∞

0

(
sinλa

λ2
− a cos λa

λ

)
e−λ|z|J0(λρ)dλ (14)

This has a square root singularity at the edge of the disk, limiting to
zero as ρ approaches a from below as

√
a − ρ. The electric fields derived

from this will necessarily have divergences of the form (a − ρ)−1/2 at
the disk edge.
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5. CLOSED FORM SOLUTIONS FOR THE FIELDS

There are three field components which occur in this problem: the
vertical electric field Ez, the horizontal (radial) electric field Eρ, and
the horizontal (azimuthal) magnetic field Hφ. In this section, we
obtain closed form solutions for all three by identifying their Hankel
transforms as known tabulated integrals (with some care because of
the significant number of erroneous entries in many tables).

5.1. The Vertical Electric Field

The vertical secondary electric field is the negative of the z derivative
of (14) with respect to z. It is

E(S)
z =

2j0

σπ

∫ ∞

0

(
sinλa

λ
− a cos λa

)
e−λ|z|J0(λρ)dλ (15)

Using the tabulated integrals 2.12.25.1 and 2.12.25.4 in [17], with
appropriately changed notation,

∫ ∞

0
e−λ|z| cos λaJ0(λρ)dλ =

√
(R+ + R−)2 − 4a2

2R+R−
(16)

Figure 1. Contours of Ez in the ρ-z plane. The disk has unit radius
and lies between the origin and ρ = 1.
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and ∫ ∞

0
e−λ|z| sinλa

λ
J0(λρ)dλ = arcsin

(
2a

R+ + R−

)
(17)

where
R± =

√
z2 + (ρ ± a)2 (18)

the vertical secondary electric field can be written in closed form as

2j0

σπ

[
arcsin

(
2a

R+ + R−

)
− a

√
(R+ + R−)2 − 4a2

2R+R−

]
(19)

5.2. The Horizontal Electric Field

The horizontal secondary electric field is the negative of the derivative
of (14) with respect to ρ. It is

E(S)
ρ = −2j0

σπ

∫ ∞

0

(
sinλa

λ
− a cos λa

)
e−λ|z|J1(λρ)dλ (20)

Figure 2. Contours of Eρ in the ρ-z plane. The disk has unit radius
and lies between the origin and ρ = 1.
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Using the tabulated integrals 2.12.25.2 and 2.12.25.5 in [17], with
appropriately changed notation,

∫ ∞

0
e−λ|z| cos λaJ1(λρ)dλ =

1
ρ
− cos(θ − η)

√
a2 + z2

ρP
(21)

and∫ ∞

0
e−λ|z| sinλa

λ
J1(λρ)dλ =

r(a + P sin η)
(z + P cos η)2 + (a + P sin η)2

(22)

where P , θ and η are defined by

P 4 =
(
ρ2 + z2 − a2

)2
+ 4a2z2 (23)

tan θ = a/z (24)
2az cot 2η = ρ2 + z2 − a2 (25)

Substituting (21) and (22) into (20) gives the closed form solution for
the horizontal (radial) electric field as

2j0

σπ

[
a

ρ
− a cos(θ − η)

√
a2 + z2

ρP
− ρ(a + P sin η)

(z + P cos η)2 + (a + P sin η)2

]
(26)

Note that care must be taken to evaluate η in (25) consistently on the
branch 0 < η < π/2.

5.3. The Horizontal Magnetic Field

The magnetic field is the sum of whatever magnetic field is associated
with the source (primary) field, and the magnetic field of the secondary
currents. Here we solve for the secondary magnetic field Hφ, which is
purely azimuthal. From Ampere’s law, the line integral of Hφ around
a horizontal circle of radius ρ, centered on the z-axis at height z above
the origin, must equal the (secondary) electric current through the
circle, the surface integral of jz over the area of the circle. Since, by
symmetry, Hφ and Ez are constants on contours of constants ρ and z,
this is equivalent to

2πρHφ(ρ, z) =
∫ ρ

0
2πρ′σE(S)

z (ρ′, z)dρ′ (27)

Using (15), ρHφ can be expressed as

2j0

π

∫ ∞

0

(
sinλa

λ
− a cos λa

)
e−λ|z|

∫ ρ

0
ρ′J0(λρ′)dρ′dλ (28)
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where we have interchanged the order of integration. Since∫ x

0
x′J0(x′)dx′ = xJ1(x) (29)

(28) becomes

2j0

π

∫ ∞

0

(
sinλa

λ
− a cos λa

)
e−λ|z|

[
ρ

λ
J1(λρ)

]
dλ (30)

or
Hφ =

2j0

π

∫ ∞

0

(
sinλa

λ2
− a

cos λa

λ

)
e−λ|z|J1(λρ)dλ (31)

This can be integrated explicitly using 2.12.25.6 in [17],∫ ∞

0
e−λ|z| sinλa

λ2
J1(λρ)dλ

=
1

2a2ρ2

[
P

√
a2 + z2 sin (θ + η) −

(
a2 + z2

)
sin 2θ

]

+
ρ

2a2
arctan

(
P sin η +

√
a2 + z2 sin θ

P cos η +
√

a2 + z2 cos θ

)
(32)

Figure 3. Contours of Hφ in the ρ -z plane. The disk has unit radius
and lies between the origin and ρ = 1.
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and 3.12.10.15 (cosine form) in [18]∫ ∞

0
e−λ|z| cos λa

λ
J1(λρ)dλ =

P cos η − z

ρ
(33)

where P , θ and η are defined in (23)–(25) in the previous section. The
horizontal magnetic field can thus be expressed in closed form as

Hφ =
j0

πa2ρ2

[
P

√
a2 + z2 sin(θ + η) −

(
a2 + z2

)
sin 2θ

]

+
j0ρ

πa2
arctan

(
P sin η+

√
a2+z2 sin θ

P cos η+
√

a2+z2 cos θ

)
− 2j0a

πρ
(P cos η−z) (34)

6. THE EQUIVALENT DIPOLE MOMENT

The behaviour of the potential and fields at large distances from the
disk is of interest. To determine it, substitute λ = u/ρ and z = ρ tan θ
in (14)

2j0

σπ

∫ ∞

0

(
sinλa

λ2
− a cos λa

λ

)
e−λ|z|J0(λρ)dλ (35)

yielding

2j0

σπ

∫ ∞

0

(
ρ2 sin(ua/ρ)

u2
− aρ cos(ua/ρ)

u

)
e−u tan θJ0(u)

du

ρ
(36)

Taking the limit as ρ tends to infinity and eliminating tan θ in favor of
ρ and z give

2a3j0

3πσ

z

(ρ2 + z2)3/2
(37)

which is identical with the expression for the electric potential of a
current dipole in a conducting medium if we take the dipole moment
m (current-separation product) to be

m =
8
3
a3j0 (38)

7. NUMERICAL EVALUATION OF THE POTENTIAL

Unlike the integrals required for the field components, the integral
for the electric potential in Equation (14) is not obviously evaluated
analytically. However, it can be evaluated numerically with one
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Figure 4. Equipotentials (solid lines) and current streamlines (dashed
lines) shown in the ρ -z plane. The disk has unit radius and lies between
the origin and ρ = 1.

of the many algorithms (e.g., [2, 3, 5, 7–10, 12]) for numerical Hankel
transforms. Figure 4 shows the equipotentials and current streamlines
for a disk of unit radius, computed using a modified version of the
method in [12].

The peak potential difference across the disk (at its center) is,
however, easily evaluated analytically as

ΔΦ(0, 0) =
4aj0

πσ
(39)

8. RESISTIVITY OF A COMPOSITE MATERIAL

The above results can be used to calculate the resistivity of a uniform
medium with randomly embedded insulating disks, if those disks are,
on average, far enough apart not to interact. The calculation is of
interest because most analyses of the effect of inclusions on electrical
resistivity (see [7, 21]) are done in terms of the volume fraction of
inclusions, which is here zero (since the disks have zero thickness).
The analytic solution provided below therefore explores an extreme
case of shape anisotropy of the disks and furthermore, does so for the
case of an infinite property contrast.
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The calculation is most easily done by computing the extra power
dissipation contributed by each disk and deducing the equivalent
medium resistivity which has the same power dissipation. The power
dissipated in any volume V of the medium can be calculated as the net
input power applied on its boundary S. A power equal to the product
of current and potential is required to drive a current j ·ndS across an
infinitesmal boundary patch of area dS with normal n. The net power
P delivered to a volume V is therefore

P =
∫
S

Φj · ndS =
∫
S

Φσn · ∇ΦdS (40)

For ease of evaluation, consider as the volume V a vertical right circular
cylinder (pillbox) of height 2h and radius b centered on the disk, Choose
b much larger than h so that the integral over the cylinder sides can
be neglected and the integral in (40) need only be evaluated over the
(circular) top and bottom of the cylinder. The integral is then (by
symmetry)

P = 2
∫ b

0
σΦ(ρ, h)

[
∂Φ(ρ, z)

∂z

]
z=h

2πρdρ (41)

Choose b large enough that the far-field approximation (37) for Φ(S)

is accurate, namely the total potential and its vertical derivative are
(using r =

√
ρ2 + z2)

Φ =
j0z

σ
+

2j0a
3

3πσ

z

r3
(42)

∂Φ
∂z

=
j0

σ
+

2j0a
3

3πσ

[
1
r3

− 3z2

r5

]
(43)

so that (abbreviating 2a3/(3π) as Ve)

P =
4πzj2

0

σ

∫ b

0

(
1 +

Ve

r3

) (
1 +

Ve

r3
− 3z2Ve

r5

)
ρdρ

=
4πzj2

0

σ

∫ b

0

(
1 +

2Ve

r3
− 3z2Ve

r5
+

V 2
e

r6
− 3z2Ve

r8

)
ρdρ (44)

Using the result
∫ b

0
r−nρdρ =

1
2 − n

[
1

(z2 + b2)n−2
− 1

zn−2

]
(45)



252 Bailey

at z = h, and letting b become much larger than h and h much larger
than a, we find the total power dissipated in the cylinder to be. We
get

P = VcP0 +
16
3

a3P0 (46)

= VcP0

[
1 +

16
3

a3

Vc

]
(47)

where P0 = j2
0/σ is the power dissipated per unit volume in the

unperturbed medium and the volume of the cylinder is Vc = 2hπb2.
The first term is simply the power that would be dissipated in the
cylinder in the absence of an insulating disk. If Vc is taken as the
volume of medium associated with each disk, so that N = Vc is the
number of disks per unit volume, the relative power dissipation per
unit volume, and thus the relative effective resistivity of the medium
associated with the disks is

1 +
16
3

Na3 (48)

This is of course valid only for dilute disk distributions in which
Na3 � 1 (A solution for high disk concentrations cannot be obtained
from the analytic closed form theory presented here). It also assumes
that the disk planes are all oriented perpendicular to the direction of
mean current flow. For disk planes oriented parallel to the direction of
mean current flow, the effect of the disks will vanish. For a material in
which the disks are randomly oriented, the mean value of the square
of the component of the current density j perpendicular to disks will
average to j2

0/3, making the resistivity enhancement reduce to

1 +
16
9

Na3 (49)

Finally, if the disks are of different radii, a3 in (48) and (49) represents
the mean-cubed-radius.
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