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Abstract—This paper describes a memory-reduced (MR) compact
two-dimensional (2-D) order-marching time-domain (OMTD) method
for full-wave analyses. To reduce memory requirements in the OMTD
method, the divergence theorem is introduced to obtain a memory-
efficient matrix equation. A lossy microstrip line is presented to
validate the accuracy and efficiency of our algorithm.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been widely
used for numerical analysis because of its accuracy and simplicity [1–
11]. A compact two-dimensional (2-D) scheme is applied to full-
wave analysis of uniform and infinitely long transmission lines to
reduce memory requirement and shorten computation time [12, 13].
However, in case of fine grid division, the Courant-Friedrich-Lewy
(CFL) stability condition imposes tiny time steps and results in a long
solution time. To eliminate the CFL stability condition, a new order-
marching time-domain (OMTD) algorithm was introduced [14]. This
unconditionally stable scheme with weighted Laguerre polynomials
does not have to deal with time steps and may be computationally
much more efficient than the FDTD method which requires time steps
to get the solution. [15, 16] combined the OMTD method with compact
2-D full-wave scheme for lossy transmission lines.

Although the OMTD method solves the temporal variables
analytically, it results in an implicit relation and has to perform the
matrix inversion. The memory storage requirements and computation
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time of the OMTD method are dependent on the produced sparse
matrix equation.

In this paper, a memory-reduced (MR) technique presented
in [17, 18] is applied to the compact 2-D OMTD method. By
substituting a Maxwell’s divergence relationship for one of the curl
difference equation, the memory storage of nonzero unknowns is
reduced by 4/27 and 1/3 of electric field components do not need to
summate from the order 0 to m− 1.

2. MATHEMATICAL FORMULATION

The electromagnetic field components expressed in real variables for
any phase constant β in z-direction satisfy [13, 19]

{Ex, Ey,Hz(x, y, z, t)} = {ex, ey, hz(x, y, t)} · j0e
−j0βz (1)

{Hx,Hy, Ez(x, y, z, t)} = {hx, hy, ez(x, y, t)} · e−j0βz (2)

where j0 =
√−1. If the partial derivative with respect to z is replaced

with −j0β, taking ex and hx for example, the 3-D differential Maxwell’s
equations yield

∂ex

∂t
=

1
ε

[
∂hz

∂y
+ βhy − σex

]
(3)

∂hx

∂t
=

1
µ

[
βey − ∂ez

∂y

]
(4)

where ε is the electric permittivity, µ is the magnetic permeability, σ is
the conductor conductivity. The other four equations can be similarly
constructed.

In charge-free regions, the divergence of D can be chosen to
replace (3)

∇ ·D =
∂ex

∂x
+

∂ey

∂y
− βez = 0 (5)

Since the Laguerre polynomials Ln(st) are orthogonal with respect
to the weighting function e−t, an orthogonal set {ϕ0, ϕ1, ϕ2, . . .} is
chosen as the basis functions

ϕn(st) = e−st/2Ln(st) (6)

where s > 0 is a time scale factor. Using these entire-domain temporal
basis functions, the fields can be expanded as

{ex, ey, ez, hx, hy, hz(x, y, t)} =
NL∑

n=0

{
en
x, en

y , en
z , hn

x, hn
y , hn

z (x, y)
}

ϕn(st)

(7)
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Using a Galerkin’s testing procedure in time domain and central
difference in space domain, and eliminating magnetic fields, with
reference to [15], we get

em
x |i,j − em

x |i−1,j +
∆xi

∆yj
em
y |i,j −

∆xi

∆yj
em
y |i,j−1 −∆xiβem

z |i,j = 0 (8)

−Ch
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where

Ce
x|i,j = 2/(sεi,j∆x̄i) (11)

Ce
y |i,j = 2/(sεi,j∆ȳj) (12)

Ch
x |i,j = 2/(sµi,j∆xi) (13)

Ch
y |i,j = 2/(sµi,j∆yj) (14)

where ∆xi and ∆yj are the lengths of the lattice edge where the electric
fields are located; ∆x̄i and ∆ȳj are the distances between the adjacent
center nodes where magnetic fields are located.

From (8), we can see that em
x |i,j has a relationship only with

adjacent four electric field components, not eight in the traditional
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OMTD method. Therefore, the proposed scheme results in a reduction
of nonzero element storage by 4/27, and does not need to summate

from order 0 to m − 1. After obtaining
{
e0
x, e0

y, e
0
z

}T
, we can solve

(8)–(10) in an order-marching procedure recursively for a given β and
calculate the expansion coefficients of the basis functions. Thus, we
can obtain the time-domain electromagnetic fields from (6) and (7).

In the presence of conductors, the divergence of the electric flux is
not zero and (5) is not satisfied any more. Different from the reduced
FDTD method described in [17], which is an explicit time-domain
algorithm, the MR-OMTD method presents an implicit relationship.
At conductor interfaces and in conductors, therefore, we can use
formulations of the traditional OMTD method described in [15].

3. NUMERICAL EXAMPLES

In this paper, the excitation source is chosen as

E(r, t) = g(r)δ(t) (15)

where the temporal variation δ(t) is a Dirac pulse, the spatial variation
g(r) is a quasi-static finite-difference solution of transverse electric
fields in a transmission line, and r = xax + yay is the position vector
on cross section.

A microstrip line, shown in Fig. 1, is considered as a numerical
example to validate the proposed method. The microstrip line has a
lossless isotropic dielectric substrate with the thickness d = 10 µm and
εr = 3.3, a gold strip with the width W = 22 µm, the thickness t1 =
3µm, h = 80d, M = 30W , the finite conductivity σ = 3.9 × 107 S/m,

Figure 1. Cross section of a lossy microstrip line.
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and a gold ground with the thickness t2 = 5µm. The boundary walls
are assumed to be perfect electric conductors (PECs).

In order to consider the conductor loss, the electromagnetic fields
in the strip are analyzed and fine grid spacing is taken inside the strip
because of the influence of the skin depth. Graded grid division is
adopted, and the minimum grid spacing is 1/3 of the skin depth.
With a time series voltage from the OMTD method, a corresponding
attenuation constant α for a given β can be obtained [20]. Fig. 2 shows
the attenuation constants of the lossy microstrip line. The results from
the compact 2-D MR-OMTD method are in good agreement with the
results from the compact 2-D FDTD and OMTD methods.

Figure 2. Attenuation constants versus frequency for the lossy
microstrip line.

Table 1 shows a comparison of the computing time for the three
compact 2-D methods for β = 0.1482 rad/mm. The two OMTD
methods consume much less CPU time than the FDTD method, in
which the CFL stability condition imposes a tiny time step tied to
the fine grid division. In addition, compared with the traditional
OMTD method, the MR-OMTD method shows improvement in the
computation efficiency because of its reduction in memory requirement.
All calculations are performed on an Intel Core2 2.1-GHz machine.
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Table 1. Comparison of the computing time for the microstrip line.

FDTD OMTD MR-OMTD
CPU Time (s) 1018 92 73

4. CONCLUSIONS

This paper describes a compact 2-D full-wave MR-OMTD method to
study the attenuation constants of lossy transmission lines. With the
divergence theorem, the memory storage of nonzero unknowns in the
matrix is reduced by 4/27 and 1/3 of electric field components do not
need to summate from the order 0 to m − 1. The formulations of
the field components at conductor interfaces and in conductors are the
same as the traditional OMTD method. In the numerical example, the
proposed method yields results that show improvement in computation
efficiency compared with the traditional 2-D OMTD method.
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