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Abstract—Frequency selective surfaces (FSSs) with fractal four
legged aperture elements are studied. Three different order fractal
elements are discussed for comparison. The results show that by using
this novel kind of elements, multiband FSSs with miniaturized elements
can be achieved. The ratio of the first resonant wavelength to the
periodicity can be up to 10.36. Four passbands for normal incidence or
two stable passbands for different incident angle and polarizations can
be obtained. The FSS is analyzed by the spectral domain approach.

1. INTRODUCTION

Frequency selective surfaces, which are used widely as microwave
absorbers [1] and filters [2], have been extensively investigated over the
years [3–8]. In many communication situations, multiband FSSs are
required. Several techniques for multiband FSSs have been presented
in the previous papers: layered FSS [3], perturbation of a single-layered
FSS [4], and the use of multiresonant elements such as Sierpinski dipole
elements [5], double square loop elements [3] and fractal cross dipole
elements [14]. In practice, The FSS with multiresonant elements has
the advantages of a lighter structure, a simplified design and ease to
fabricate.

In the conical radome applications, curved FSSs with large
curvature are required. In this context, FSSs with miniaturized
elements are preferred, since small unit cells are distorted less and in
turn less distortion of the transmission response. In the metamaterial
applications, such as artificial magnetic conductor, miniaturized
element is also required to facilitate flexible spatial filtering for an
arbitrary wavefront. In [9], the fractal Hilbert curves are used to reduce
the element size. In [10], the improved Gangbuster elements are used.
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In this paper, FSSs with fractal dipole aperture elements are
presented. Three different order fractal elements are discussed. The
results show that both multiband and miniaturized elements can be
effected by using higher order fractal elements.

2. FRACTALS AND THEIR APPLICATIONS

Fractals are geometrical shapes that are self similar, and can generate
almost any complex structure in nature, through iterating of certain
simple geometries. By using fractal shapes, an arbitrarily long curve
confined in a given volume can be obtained. This property has been
shown effective in reducing the spacing between resonant elements in an
FSS [9] and in reducing the volume occupied by small antennas [11].
And by exploiting the self-similarity property of fractals, multiband
and wideband behaviors can be achieved in both FSS [6, 14] and
antenna [12, 13] applications.

3. ANALYSIS OF FSSS USING SPECTRAL DOMAIN
APPROACH

Spectral domain approach has been successful in analyzing frequency
selective surfaces [2]. First, the Green’s function of the multilayered
media is calculated in the spectral domain, by using the transmission
line theory. Then, the electric field integral equation (EFIE) at the
conducting sheet can be written as
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where Einc
x (x, y), Einc

y (x, y) are the incident field when the conducting
sheet does not exist, G̃xx, G̃xy, G̃yx, G̃yy are components of the dyadic
Green’s function, and J̃x, J̃y are the electric current induced on the
sheets. It is noted that the script ‘˜’ means the Fourier transformation,
which is defined as
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F (α, β)e−j(αx+βy) dx dy (2)
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Because the FSS is periodical, the integration becomes doubly infinite
summations of Floquet harmonics, that is
⎧⎪⎪⎪⎪⎨
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where Tx, Ty are periodicities, and αp, βq are known as Floquet
harmonics, which is given as

αp = k0 sin θ cos ϕ + 2πp/Tx

βq = k0 sin θ sin ϕ + 2πq/Ty

k0 is the wave number in free space, θ, ϕ are elevation and azimuth
angle of the incident wave, respectively. It is noted that in Eq. (3) a
rectangular array alignment is supposed. The EFIE is solved by the
Galerkin’s moment method, while rooftop basis function is used to
expand the electric current. After the electric current is solved, the
scattering matrix is ready to know.

4. NUMERICAL RESULTS

The fractal four legged elements of different orders are shown in Fig. 1.
The black part means the aperture area. In order to make the elements
more compact, as shown in Fig. 2, the array is aligned in a isosceles
triangle way. It is noted that the isosceles triangle array can be
seen as a rectangular array if two elements along y-axis are united
as one element (see Fig. 2). Note that the elements are with eightfold
symmetry. The FSS elements are all etched on a dielectric substrate,
and Rogers RT5880 with thickness 1.27 mm is used as the substrate.
The widths of the aperture line and the line enclosed by aperture line,
denoted as w, are all the same for each element. The parameters of the
FSS elements are given in Table 1. All dimensions are in millimeter.
As that in [9], the ratio

√
2λ1/p is used as a figure of merit, where

λ1 is the first resonant wavelength. For all the three cases, λ1 is
approximately equal to 150 mm. The coefficient

√
2 is due to the fact

that two elements are included in a unit cell. In order to avoid grating
lobes, for normal incidence, the cutoff wavelength is given as [5]

λc = p/
√

2. (4)
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Figure 1. Fractal four legged elements of different orders: (a) first
order, (b) second order, (c) third order.
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Figure 2. Schematic of array alignment and the symmetry property
of elements.

While for 45◦ incidence, the cutoff wavelength is given as

λc = p/
√

2 ∗ (1 + sin(45◦)). (5)

Therefore, the cutoff frequencies for the three cases are 5.47 GHz,
8.83 GHz, and 12.14 GHz, respectively.

Figure 3 shows the transmission coefficient of the FSS with the
first order fractal four legged elements. Both normal incidence and
45◦ incidence and both TE and TM polarization are considered. The
simulated results by Ansoft HFSS are also given for comparison. The
calculated results are in a good agreement with the simulated. It can
be seen that the first resonance is almost the same for different incident
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Figure 3. Transmission coefficient of the FSS with fractal first order
four legged elements.

angles and polarizations. The ratio
√

2λ1/p is
√

2λ1/p =
√

2 ∗ 150/45.44 = 4.67 (6)

A second resonance is found at 4.34 GHz, 4.22 GHz, 4.32 GHz for
normal incidence, 45◦ TE, and 45◦ TM, respectively. The shift of
this resonant frequency is 0.12 GHz.

Figure 4 shows the transmission coefficient of the FSS with the
second order fractal four legged elements. The first resonance is also
stable for different incident angles and polarizations. The ratio

√
2λ1/p

is √
2λ1/p =

√
2 ∗ 150/28.16 = 7.53 (7)

A second resonance is found at 4.62 GHz, 4.58 GHz, 4.60 GHz for
normal incidence, 45◦ TE, and 45◦ TM, respectively. The shift of
this resonant frequency is 0.04 GHz, much less than that of the first
case.

Table 1. Parameters of the FSS elements.

order p w w1 w2 w3 w4 w5 w6

1 45.44 0.71 41.89

2 28.16 0.44 25.96 15.40 11.88

3 20.48 0.32 18.88 16.32 11.20 8.64 6.08 3.52
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Figure 4. Transmission coefficient of the FSS with second order
fractal four legged elements.
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Figure 5. Transmission coefficient of the FSS with third order fractal
four legged elements.

Figure 5 shows the transmission coefficient of the FSS with the
third order fractal four legged elements. Again, the first resonance is
stable for different incident angles and polarizations. The ratio

√
2λ1/p

is √
2λ1/p =

√
2 ∗ 150/20.48 = 10.36 (8)

A second resonance is found at 4.98 GHz, 4.94 GHz, 4.92 GHz for
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normal incidence, 45◦ TE, and 45◦ TM, respectively. The shift of this
resonant frequency is 0.06 GHz. Though there are two other resonances
at 8.00 GHz and 9.56 GHz, they are not stable for different incident
angles and polarizations.

5. CONCLUSIONS

FSSs with fractal four legged aperture elements of different orders
are discussed. The results show that by using higher order fractal
elements, small periodicity and multiband FSSs can be obtained. For
the third order, the ratio

√
2λ1/p reaches 10.36; four passbands for

normal incidence are obtained, however, only the first two bands are
stable for different incident angles and polarizations. Larger ratio and
more bands for normal incidence are expected by using higher order
fractal elements. In practice, the line width can not be infinite thin,
but larger than a certain value due to the technologic reasons. This
in turn restricts the fractal orders. It should be noted that the band
ratio λ2/λ1 can be tuned by changing the ratio w4/w1. The result is
in a good agreement with that by Ansoft HFSS.
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