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Abstract—In this paper, we present an efficient hybrid spatial-
spectral formulation of the method of moment (MoM) in conjunction
with the Mixed-Potential Integral Equation (MPIE) for planar circuit
analysis. This method is based on the decomposition of the Green’s
functions in two parts: quasi-static in the near field region and the
dynamic contribution in the far field region. Using this decomposition
of Green’s functions, the method of moment matrix entries can be
reduced to a sum of two integrals. The first one is expressed in
the spatial field and corresponds to the quasi-static contribution. It
is analytically evaluated after a development in Taylor series of the
exponential terms in the function to be integrated. The integrals
expressed in the spectral field and corresponding to the dynamic
part have the advantage of being calculated on a finite range and
this is independent of the choice of the basis and test functions.
The integrals expressed in the spectral field are performed by using
numerical integration. It is also demonstrated that this hybrid method
has accelerated the matrix fill in time by using a Fast Fourier Transform
(FFT) algorithm. In order to validate the proposed method, numerical
results are presented.
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1. INTRODUCTION

Several numerical approaches have been developed to determine the
characteristics of the planar structures. Among the well known
methods, the MoM is the most robust approach used for planar circuit
analysis and it can be applied both in spectral and spatial domains [1].

In the spectral domain, the MoM presents several limitations.
Firstly, a good asymptotic behaviour of the spectral Green’s function
is necessary. In addition, the quality of the convergence of the integrals
computation depends on the choice of the basis and test functions [2].

The application of the MoM in the spatial domain suffers also
from some limitations, specially when the frequency becomes higher
and the quasi-Transversal Electromagnetic Mode (quasi-TEM) is not
guaranteed. In the literature, the main limitations of spatial-domain
MoM formulation are the accuracy of the closed-form Green’s functions
for large distances, not extracting the quasi-static terms, the surface
wave poles, and introducing wrong branch point in the process of
approximation [3, 4].

To avoid the limitation of MoM in spatial and spectral domains,
a hybrid spectral-spatial method is used. This technique has been
implemented recently in the literature [5, 6]. In [6], the authors have
presented a hybrid formulation for the electric field and they used it
to evaluate the array Green’s function (AGF).

However, in this paper, we apply the hybrid method formulation
to resolve the mixed potential integral equation (MPIE) in an efficient
and a fast approach which is based on a simultaneous formulation in
both spatial and spectral domains. The entries of the MoM matrix are
then given by the sum of two integrals. The first one is expressed in the
spatial domain. This part is analytically evaluated after a development
in Taylor series of the exponential terms in the function to integrate.
The integrals expressed in the spectral domain have a finite range, and
they are calculated using numerical integration. Then the convergence
problem is avoided in this approach. In order to validate our method,
numerical results are presented.

2. METHOD OF MOMENTS

2.1. Spatial-Domain Method of Moments

The basic idea of the MoM is to convert an integral equation to a matrix
equation. The application of MoM in conjunction with the closed-form
Green’s functions in spatial domain has improved the computational
efficiency of this technique [7–9]. Using the mixed potential integral
MPIE formulation, the spatial domain MoM matrix entries of planar
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geometry can be expressed as follows:
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Where (Gxx
A , Gq) are Green’s functions for the vector potential and

scalar. Jxm and Jxn are the surface current density and they
are decomposed in rooftops basis functions in x and y directions,
respectively. The spatial-domain Green’s functions employed in (1)
are obtained in closed-form using the DCIM two-level approximation
described in [11], and Sommerfeld identity and they are given by
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where ri =
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(x− x0)2 + (y − y0)2 − b2i is the complex distances.
(G stands for either GA

xx, orGq), ai, bi, and M are respectively the
complex coefficients, and number of complex images obtained from
the application of GPOF technique.

Using this approximation (2), the integrals correspond to matrix
entries of method of moment can be written as follows:
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The double integrals in (3) can be evaluated analytically as
proposed in [7, 8]. Therefore, the computational efficiency of the
spatial-domain MoM in the solution of the MPIE has been improved in
the literature. However, this formulation suffers from some limitations
in terms of accuracy of Green’s functions when the frequency becomes
higher, of introduction of surfaces wave poles, branch points and
branch cuts [4]. When we use the sub-domain basis functions, the
number of basis functions that are required to model the current
on a structure increases very rapidly with increasing the size of the
structure. This implies that the interaction matrix can become quite
large and the CPU time becomes higher.

2.2. Spectral-Domain Method of Moments

The tangential electric field on the plane of conductors can be expressed
in spectral domain as follows:(

Ẽx(kx, ky)
Ẽy(kx, ky)

)
=

(
Ãxx(kx, ky) Ãxy(kx, ky)
Ãyx(kx, ky) Ãyy(kx, ky)
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Ãxx(kx, ky) = −jωG̃A
xx(kx, ky) −

k2
x

jω
G̃q(kx, ky) (5)

Where Ãxx are the electric field Green’s functions in the spectral
domain and J̃ is the current distribution obtained through the Fourier
transform of a basis functions.

After substituting the expanded current expression and the
Fourier transform of J̃ into (4). Galerkin’s procedure leads to the
matrix equations:

Z̃mn.Imn = Ṽmn (6)

Where Z̃mn is the mutual impedance coefficient between testing and
basis functions. The matrix entries of MoM can be expressed as:

Z̃mn =
∫ +∞

−∞

∫ +∞

−∞
J̃∗

xmJ̃xnG̃(kx, ky)dkxdky (7)

The expression of Green’s functions in spectral-domain is given in [10].
The MoM matrix entries in spectral domain are expressed in

two dimensional integrals; they are oscillatory, complex and slow
converging functions depending on the distance between the basis and
testing functions.

Numerical methods can be used to evaluate these types of infinite
integrals. It is possible to use asymptotic extraction techniques [14, 15].
Another approach is to transform the spectral variables to a polar
coordinate system. The FFT can also be used to speed up numerical
integration. In this paper, a hybrid spatial-spectral formulation is
presented to accelerate the MoM matrix entries.

3. HYBRID SPATIAL/SPECTRAL FORMULATION

The mixed Spatial-Spectral Method of Moments is based on the
decomposition of the spectral Green’s functions in quasi-static and
dynamic parts. Each inner product in MoM matrix elements is then
divided into two parts. The first one is still expressed in the spatial
domain, while the other integral is computed in the spectral domain.

In hybrid method, the Green’s function can be written as follows:

G̃(kρ) = G̃s(kρ) + G̃d(kρ) (8)

where G̃s = lim
k0→0

G̃(kρ) the quasi-static part, and G̃d(kρ) = G̃(kρ) −
G̃s(kρ) is the remaining part.
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Employing this decomposition of Green’s function, Equation (7)
can be written as:

Z̃mn = Z̃s
mn + Z̃d

mn

=
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The first double integral in (9) is evaluated in the spatial domain, and
the second one is treated in the spectral domain.

3.1. Evaluation of Quasi-Static Part in MoM Matrix Entries

The first integral Z̃s
mn in (9) expressed in the spatial domain can

be written as (3). In [7], the analytical evaluation of these integrals
expressed are computed, using the fifth-order Taylor series expansion
of the exponential term e−jK0ri around r0 =

√
x2

0 + y2
0 − b2i .

In our work, we apply the AS-MoM technique [8, 9] recognized
more efficient than [7]. This technique is based on the combination of
two Taylor series expansions. The first one is for smaller r0; we use
the same technique in [7]. The second one is for the larger r0; we use
a Taylor series expansion of the exponential term e−jk0ri

ri
where the

integrals are given by: ∫ ∫
xkyldxdy (10)

when the term e−jk0ri

ri
is approximated as follows:

e−jkri

ri
=

e−jkr0

r0

∑
k+l≤5

βklx
kyl (11)

where βkl are the Taylor series coefficients.

3.2. Evaluation of Dynamic Part in MoM Matrix Entries

The second integrals Z̃d
mn in (9) which are expressed in the spectral

field and correspond to the dynamic part have the advantage of
being calculated on a finite range; the problems of convergence of
the integrals do not arise any more [14]. The integrals expressed in
the spectral field are calculated by using numerical integration. The
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expression of integrals are given as follows:
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Throughout this study, roof-top functions are chosen as the basis and
test functions for current density, with each cell having the dimension
of wxandwy which takes the form of [14]. The Fourier transforms of
testing and basis functions:

J̃∗
xm(kx, ky)J̃xn(kx, ky)=e−j(xm−xn)kx ·

(
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2
kxωx

2
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2
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2

)2

(13)

The evaluation of (13) is carried out by using numerical integration
(Gaussian quadrature). Furthermore it is also demonstrated that this
hybrid method has accelerated the matrix fill in time as compared to
others approach using a Fast Fourier Transform (FFT) algorithm given
in [13]. The function to be transformed is:

f(kx, ky) = J̃∗
xm

˜Jxn

(
G̃Ad

xx − k2
x

k2
0

G̃d
q

)
(14)

where G̃Ad
xx and G̃d

q are the remaing part of Green’s function. The
matrix entries corresponding to dynamic part can be rewritten as:

I(d, d′) =
∫ k

−k

∫ k

−k
e−jkxde−jkyd′f(kx, ky)dkxdky (15)

where d = xm − xn and d′ = ym − yn are the distance between the
basis and testing functions.

With a transformation of variable, this integral can be written as:
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where: k′xr
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r
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′
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R
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Using this representation, an FFT routine (FFT2D) from the
international Mathematical and Statistical Libraries (IMSL) is used to
compute the discrete complex Fourier transform of a complex matrix
of size R ∗R′.
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4. NUMERICAL RESULTS

In order to verify our approach, the double integrals which is defined in
(9) are evaluated by our method and are compared with spatial MoM.
A good agreement is observed in Figure 1.

Figure 1. Comparison between different numerical techniques of
evaluation of the infinite 2-d integral for single layer microstrip line
structure (h = 0.7874 mm, εr =2.33, Wy = 0.03 mm).

Table 1. CPU Time for different method of Computation on a P-IV
(RAM 1GB) PC for the analysis of microstrip line (Wy = 0.03 mm,
h = 0.7874 mm, L = 12 cm, εr =2.33).

Number of Spectral Our Speed
unknown MoM (a) method (b) Improvement a

b
40 66.83 (seconds) 0.32 (seconds) 208.34
200 325 (seconds) 1.01 (seconds) 321.78

In this paper, our hybrid method is based on the combination of
spatial and spectral formulation. The double integral in (9) is divided
into two parts; the first one is evaluated analytically in spatial domain;
the remaining integrals are performed using the quadrature integration
and also to speed up this part, a FFT algorithm is used.

To improve the computational efficiency and the accuracy of the
hybrid method proposed in this paper, CPU times of the evaluation of
matrix entries, and scattering parameters (S11 and S21-parameters) of
coupled line filter are given.
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Figure 2. Geometry of Coupled microstrip line filter.

Figure 3. Magnitude of S11 of the coupled microstrip line filter.

To show the speed of the computation time, the CPU time between
the proposed method and the spectral MoM is given in Table 1 for two
different numbers of unknowns. For 200 unknowns, the CPU time of
our method is 1.01 second and for the spectral MoM is 325 second; the
speed improvement is 321.78. We note that our method is faster than
the spectral MoM.

In this paper, the hybrid MoM formulation is applied to a coupled
microstrip line filter, where the dielectric constant of the substrate εr

=2.33, the substrate thickness h = 0.79 mm, l = 10 mm, W = 1 mm
and S = 0.2 mm. Figures 3 and 4 show the magnitude of S11 and S21

of the coupled line filter are obtained using the spatial MoM approach,
and our method are compared to the results of the commercial software
momentum (ADS). The resonance frequency of S11 computed by our
approach is f = 10.3 GHz, in comparison with Momentum (ADS), we
found f = 10.4 GHz. The agreement is good.
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Figure 4. Magnitude S21 of the coupled microstrip line filter.

5. CONCLUSION

In this paper, we have presented a hybrid formulation of the
method of moments for analysis of microstrip structures. The
main idea is to evaluate the impedance matrix elements by two
double integrals. One is treated in spatial domain using analytical
method; the other is computed in spectral domain and accelerated
by FFT. The results obtained from our proposed approach show
the improved computational efficiency. Numerical results for single
layer microstrip structures are presented and compared leading to
good agreements. Our approach can be easily extended to multilayer
microstrip structures.
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