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Abstract—In this research, a fast approach of method of moments
(MoM) for analyzing 3-D dielectric body is proposed. The unknown
polarization current in dielectric body is expanded into rectangular
blocks with overlapping volume sinusoidal basis functions. To
accelerate the matrix-solving CPU time in MoM, the multi-region
iterative method, where the overlapping blocks are used as the iteration
units, is applied to solving the matrix equation in the MoM. Some
numerical results are given to show that the CPU time for solving
unknown currents can be reduced effectively by multi-region iterative
method.



162 Zhai et al.

1. INTRODUCTION

The method of moments (MoM) is one of the effective methods for
electromagnetic analysis of radiation and scattering problems where
both of conductors and dielectric bodies are involved. When the
dielectric body is included in the analysis model of MoM, it costs much
of the CPU time to fill the mutual impedance between the dielectric
blocks because the expression of mutual impedance between the 3-
D dielectric blocks includes multiple integral. The point matching
technique can reduce the CPU time for integration [1], but it is
difficult to obtain the accurate solution of self/mutual impedance.
The Galerkin-MoM analysis for dielectric scatters by using sinusoidal
reaction technique can give accurate solution, but a double volume
integral is required. Many researches have been done to reduce double
volume integral to lower dimensional integral. The double volume
integral was reduced to a three-dimensional integral [2]. Recently, the
double volume integral was further transformed into one-dimensional
integral to reduce the CPU time [3, 4].

Although the CPU time of filling the self/mutual impedance can
be reduced greatly, solving solution of matrix equation appearing in
the MoM costs much more CPU time than matrix-filling when the
dielectric body becomes larger. Many researches have been carried
out in order to obtain the fast approach for a large-scale problem.
The fast multipole method (FMM) reduces CPU time by accelerating
the matrix-vector multiplication in an iterative solver [5]. Some other
techniques are also given for the fast solving [6]. The multi-region
iterative method is another method to reduce the CPU time in solving
the matrix equation, which have been studied in two-dimensional
or three-dimensional surface radiation and scattering problems of
conducting bodies [7–12]. The iterative multi-region algorithm is also
used by hybrid method [13].

In this research, the volume integral method combined with
multi-region iterative method for 3-D volume radiation and scattering
problems of dielectric bodies is studied. In the MoM, where 3-
D dielectric body is involved, the unknown polarization current in
dielectric body is expanded into rectangular blocks with overlapping
volume sinusoidal functions. To accelerate the matrix-solving CPU
time, the whole dielectric body is divided into many smaller
overlapping volume sub-regions. The iterative algorithm, where the
overlapping volume sub-region is regarded as the iteration unit, is
applied to solving the matrix equation in the MoM. It is described that
how the multi-region iterative method is implemented on the dielectric
body problem. Some numerical results are given to show that the
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CPU time for solving unknown currents can be reduced effectively by
multi-region iterative method.

2. FORMULATION

In the MoM, the dielectric body is divided into dielectric blocks and
the mutual impedance between the blocks can be expressed by a double
volume integral
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functions for the polarization current inside the dielectric scatters,
respectively. The detailed calculation of self and mutual impedance
by equation (1) can be found in [4]. The unknown polarization current
is expanded into overlapping volume sinusoidal functions in x, y and
z directions.

After filling the self/mutual impedance, generally the following
matrix equation can be obtained by

[Z][I] = [V ] (2)

By using the multi-region iterative method for solving above
Eq. (2), the whole object is divided into smaller sub-regions.
Considering the iterative convergence problem, the adjoining regions
are overlapped generally [7, 8], in which the detailed discussions have
been given. In this research, the method was further applied to 3-D
volume problem. The volume multi-region model is shown in Fig. 1.
There are many methods to divide a large object into many sub-
regions. In order to simply and clearly explain the idea of sub-regions,
we only use the simpler one-dimensional divided model as used in [7, 8]
to illustrate the application of sub-regions iterative method, which
can show the validity of our method. About the selection rule of
overlapping regions can be detailed found in [7–9]. For example, in
[7], the overlapping region size equal to 1/4–1/5 of the sub-region size
is good enough to reach the full MoM solution.

Firstly, if the interactions from the other regions are neglected,
the relationship between unknown current and excitation voltage in
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Figure 1. Many overlapped sub-regions for large object.

the first volume sub-region (R1) can be expressed by

[Z11] [I1] = [V1] (3)

where [Z11] denotes the self impedance in volume sub-region1. [I1] is
the unknown current coefficient vector in volume sub-region1. If the
unknown current vector [I ′1] in non-overlapping part of sub-region1 is
assumed to be unchanged, unknown current vector [I2] in volume sub-
region2 can be solved by

[Z22] [I2] = [V2] −
[
Z ′

21

] [
I ′1

]
(4)

where [Z ′
21] is the modified mutual impedance matrix, which represents

the interaction between volume sub-region2 (R2) and the non-
overlapping volume part of sub-region1.

Repeating the above procedures, we can obtain the iterative
solution of the lth volume sub-region currents by the following iterative
matrix equation which can also be called forward and backward
iterative method:
For the forward iterative equation:
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For the backward iterative equation:
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where l represents sub-region number. For (5), l = 1, 2, . . . , n and for
(6), l = n, . . . , 2, 1. m represents iterative step.

In above two equations, [Zll] denotes the self impedance matrix
of sub-region l (Rl). [Z ′

li] denotes the modified mutual impedance
matrix, which represents the interaction between sub-region l and the
corresponding non-overlapping part of sub-region i. [I ′i] denotes the
unknown current matrix in non-overlapping part of sub-region i. [Vl]
denotes the exciting voltage matrix in sub-region l. The superscript
m denotes the mth iteration. The initialized current [Il](0) = 0. The
Detailed discussions with regards to saving the calculation count are
given and an iterative process is suggested for the high-order solutions
in [7, 8].

The iterative error is estimated by the residual norm, which is
defined by

Π = ‖[Z][I] − [V ]‖ / ‖[V ]‖ (7)

3. NUMERICAL RESULTS

The model for a numerical analysis is shown in Fig. 2. A wire dipole
antenna is located in the vicinity of a dielectric rectangular box. The
dielectric body is divided into dielectric blocks. The sinusoidal basis
and test functions are also used for the dipole antenna.
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Figure 2. Simulation model of dipole antenna located in the vicinity
of dielectric box.

In order to show the validity of the multi-region iterative method
on based of volume integral method, the numerical example is given.
Dx = 10.5 mm, Dy = 112 mm, Dz = 10.5 mm, d = 1 mm, 2H =
10.5 mm, r = 0.1 mm, εr = 5, σ = 0. The size of volume monopole
basis function is 3.5 mm× 3.5 mm× 3.5 mm. The multi-region model
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is shown in Fig. 3. The dielectric scatter is divided into n overlapped
volume sub-regions, which is shown in the following figure.

Figure 3. Multi-region model for antenna and dielectric box.

Gauss-Jordan method (n = 1) and multi-region iterative method
(n > 1) are used for the same size body. In the sub-region iterative
method, the residual norm is smaller than 1 × 10−6.

The CPU-times with different number of sub-regions when
operation frequency is 4.5 GHz are shown in the Table 1 where a
Pentium-III 2.8 GHz PC with 1.5 GB of memory is used.

Table 1. CPU time results for different number of sub-regions.

Number of

sub-regions

Time for

inversing

matrix T1

[sec.]

Iterative

steps

Time for

iteration T2

[sec.]

Whole

time T

[sec.]

1 444.218 444.218

3 203.078 4 0.828 203.906

5 50.296 6 1.218 51.514

7 23.500 9 1.781 25.281

9 6.0625 10 2.203 8.265

From the Table 1 we can see that compared with the conventional
solution (K = 1) without overlapping regions, the sub-region iterative
method (K > 1) effectively reduces the whole CPU time. We also
note that when number of sub-regions increases, the time T1 becomes
smaller, however the iterative steps become larger and the time T2 also
becomes larger. In general, when the number of sub-region increases,
the T1 will becomes smaller and T2 will become larger. Thus, we will try
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not to increase T2 greatly when we reduce T1 by sub-regions method.
In order to reach the optimum selection, some basic relations or rules
should be considered, for example, in [7], the overlapping region size
equal to 1/4–1/5 of the sub-region size is good enough to reach the full
MoM solution; When number of sub-regions is constant, overlapping
regions becomes larger, T1 will become larger and iterative steps will
become smaller. The detailed discussions about that can be found in
[7–9].

In the following, the convergences for the different number of sub-
regions are also shown in the following Fig. 4.
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Figure 4. The convergence for the different number of sub-regions.

From above table, we can see that the whole CPU time of solving
unknowns can be effectively reduced by multi-region iterative method
compared with conventional Gauss-Jordan method.

The number of iteration steps versus the total number of the
unknowns is shown in Fig. 5. The computational model is same as
one in Fig. 3. When unknowns increase, it means the distance along y
direction of rectangular dielectric body in Fig. 3 will increase. When
the K is constant, overlapping region is nearly equal to 1/3 of sub-
region size.

The total computational time T can be approximatively expressed
by T ≈ T1 + T2 = α

∑K
1 M

3
i + βL

∑K
1 M

2
i , where, K is number of

sub-regions, N is the whole number of unknowns, and Mi denotes
the number of unknowns in sub-region i. Because each sub-regions
have overlapping regions, the sum of all unknowns

∑K
1 Mi will be

larger than N . The first term is for evaluating [Zll]−1, the second
term is for iterating process, and the α, β are constants depending on
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the computer performance, L denotes the number of iterative steps.
From Fig. 5, we can see the iterative steps L tend to be stable when
the whole unknowns N become larger in the case that the number of
sub-regions (K) is constant. At the same time, we can also find the L
gives some increase when K (the number of all sub-regions) becomes
larger in the Fig. 5.
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Figure 5. Iterative steps versus the number of unknowns.

4. CONCLUSION

In this research, multi-region iterative method has been effectively
applied to dielectric body problem on basis of volume integral equation.
The numerical results show that the computational CPU time can be
reduced significantly if the multi-region iterative method is applied.
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