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Abstract—In this paper, direction-of-arrival (DOA) estimation of a
single narrow-band source with uniform linear arrays is addressed. The
basic idea is to convert the received data to a correlation sequence
which can be modelled as a noisy sinusoid. Then the computationally
attractive and accurate generalized weighted linear predictor frequency
estimator is applied for DOA determination. The effectiveness of the
proposed method is demonstrated via computer simulations.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation for multiple plane waves
impinging on an array of sensors has attracted much attention in
the literature [1–4] due to its numerous applications in radar, sonar,
communication, and so on. In particular, the fundamental problem of
estimating the DOA of a single source has been extensively studied [4–
8]. Using the maximum likelihood (ML) approach, the deterministic
ML algorithm [4] and modified ML estimator based on the principal
eigenvector method [5] are devised. To avoid the huge computations
involved in finding the eigenstructure of the sample covariance in [5], a
fast and explicit approximate ML algorithm with lower computational
complexity has also been developed [6]. In addition, ML DOA
estimation for a constant-modulus signal is addressed in [7] which
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utilizes the available knowledge of the signal waveform. However, all
these ML-based estimators [4–7] need one-dimensional (1-D) search
to find the solution and thus the computational requirement is still
demanding. Even the well-known subspace-based method for DOA
estimation [8] also needs 1-D spatial spectrum peak search. In this
paper, we develop a computationally simple algorithm, which gets
rid of the undesirable 1-D search, for direct DOA estimation of a
single narrow-band source. The key idea is to compute the correlation
sequence of the array output, which can be modelled as a noisy complex
sinusoid, and then apply the generalized weighted linear predictor
(GWLP) algorithm [9, 10] to get the DOA estimate.

The rest of the paper is organized as follows. Section 2
addresses the 1-D DOA estimation for a single narrow-band source.
The proposed DOA estimation algorithm consists of two steps,
construct a correlation sequence from the received array data and
then apply GWLP method to the sequence. Extension of the
methodology for two-dimensional (2-D) DOA estimation is presented
in Section 3. Numerical examples are included in Section 4 to evaluate
the estimation performance of the proposed approach, and finally
conclusions are drawn in Section 5.

2. ONE-DIMENSIONAL DOA ESTIMATION

Consider a single narrow-band source impinging on a uniform linear
array of P sensors with equal inter-distance d from the direction θ.
The complex signal received at the array can be expressed as

x(t) = a(θ)s(t) + n(t), t = 1, 2, . . . , N (1)

where

x(t) = [x1(t), . . . , xP (t)]T

a(θ) =
[
1, ej2πd sin(θ)/λ, . . . , ej2π(P−1)d sin(θ)/λ

]T

and

n(t) = [n1(t), . . . , nP (t)]T

The s(t) represents the signal source, xi(t) is the noisy signal received
at the ith sensor, a(θ) is the steering vector of the array, λ denotes the
wavelength of source signal, n(t) is the additive white Gaussian noise
vector and T denotes transpose operator.
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Given the received data, we compute the following correlation
sequence:

y(k) =
1

P − k

P−k∑
l=1

1
N

N∑
t=1

xl+1+k(t)x∗
l+1(t), (2)

k = 0, 1, . . . , P − 1

where ∗ stands for complex conjugation. When N is sufficiently large,
y(k) can be approximated as

y(k) ≈ 1
P − k

P−k∑
l=1

σ2
sal+1+ka

∗
l+1

+
1

P − k

P−k∑
l=1

1
N

N∑
t=1

nl+1+k(t)n∗
l+1(t)

≈ σ2
se

jωk + ēnn(k), k = 0, 1, . . . , P − 1 (3)

where ω = 2πd sin(θ)/λ denotes the spatial frequency, ai represents the
ith element of a(θ) and σ2

s is the power of s(t). According to Theorem 1
in [11], {ēnn(k)} are asymptotically (for N → ∞) jointly Gaussian
distributed with zero means. It is easily proved that {ēnn(k)} are
statistically uncorrelated with each other and have identical variances.

As a result, (3) corresponds to the single complex tone in white
noise model and we propose to use the computationally efficient
and accurate GWLP method [9] for estimating ω. Our estimation
procedure is summarized as follows:
(i) Compute the correlation sequence of the array output using (2)

and construct two sequences, namely, y1 = [y(P ), . . . , y(2)]T and
y2 = [y(P − 1), . . . , y(1)]T .

(ii) Obtain an initial estimate of ω, denoted by ω̂, using the weighted
linear predictor frequency estimator [12].

(iii) Use ω̂ to construct the weighting matrix W for which its (m, n)
entry is given by

[W]m,n =
P min(m, n) − mn

P
ej(n−m)ω̂,

1 ≤ m ≤ P − 1, 1 ≤ n ≤ P − 1

where min(m, n) = m if m < n and it is equal to n otherwise.
(iv) Compute an updated ω̂ using:

ω̂ = �
(
y2

HWy1

)
where � is the angle operator.
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(v) Repeat (iii)–(iv) for a few iterations.

(vi) Compute the estimate of DOA, denoted by θ̂ using:

θ̂ = sin−1
(

ω̂λ

2πd

)

3. EXTENSION TO TWO-DIMENSIONAL DOA
ESTIMATION

In this Section, we extend the GWLP method to 2-D DOA estimation
for a single narrow-band source received by a L-shaped array with two
uniform linear arrays on the x and y axes [13]. Each sub-array consists
of (P − 1) sensors with inter-distance d, which means that they are at
(P −1, 0)d, (P −2, 0)d, . . . , (1, 0)d, (0, 0), (0, 1)d, . . . , (0, P −1)d. Let
xk(t) and yk(t) be the data received at the kth sensor on the x and y
axes, respectively. The 2-D received data of array can be expressed as

xk(t) = s(t)ej2πkd sin(θ) cos(φ)/λ + nx(t)

yk(t) = s(t)ej2πkd sin(θ) sin(φ)/λ + ny(t), (4)
t = 1, 2, . . . , N, k = 0, 1, . . . , P − 1.

where θ and φ denote the elevation angle and azimuth angle of source
signal, respectively, while nx(t) and ny(t) are uncorrelated white
Gaussian noises.

From (4), we compute the following correlation sequence:

rk,l =
1
N

N∑
t=1

xk(t)y∗l (t), k, l = 0, 1, . . . , P − 1 (5)

For sufficiently large samples, {rk,l} can be approximated as

rk,l ≈ σ2
se

j(ω1k−ω2l) + nk,l, k, l = 0, 1, . . . , P − 1 (6)

where ω1 = 2πd sin(θ) cos(φ)/λ and ω2 = 2πd sin(θ) sin(φ)/λ are the
2-D unknown spatial frequencies. It is easy to show that {nk,l},
the residual noise sequence after correlation computation, can be
approximated as white Gaussian process with identical variances.

By considering each column of {rk,l} is a 1-D signal which is
parameterized by ω1 only and utilizing all column information, it is
straightforward to apply the 1-D GWLP method for estimating ω1 [10]:

ω̂1 = �

(
P∑

k=1

yH
2,kWy1,k

)
(7)
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where y2,k = [rP,k, rP−1,k, . . . , r2,k]T and y1,k = [rP−1,k, . . . , r1,k]T .
Similarly, we can obtain the estimate of ω2, denoted by ω̂2, via

partitioning {rk,l} row by row. Following the iterative procedure in
Section 2, 2-D spatial frequency estimation is achieved. The final
step is to determine the estimated DOA pair, denoted by (φ̂, θ̂), from
(ω̂1, ω̂2):

φ̂ = tan−1
(

ω̂2

ω̂1

)

θ̂ = sin−1
(

λ

2πd

√
ω̂2

1 + ω̂2
2

)
(8)

4. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the perfor-
mance of the proposed GWLP method in 1-D and 2-D DOA estima-
tion. The root mean square error (RMSE) is employed as the per-
formance measure and comparison with the ML estimator [6, 14] and
Cramér-Rao lower bound (CRLB) [8] is also made. We use 3 itera-
tions in the GWLP algorithm and all results are based on average of
100 independent runs.

In the first experiment, a uniform linear array consisting of 8
sensors with inter-distance d = λ/2 is considered and the DOA of
a single source is located at 0◦. The number of samples N is set to
100. It is seen from Figure 1 that the performance of the proposed
method is comparable to that of the ML method in all signal-to-noise
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Figure 1. RMSE of DOA estimate versus SNR in 1-D case.
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ratio (SNR) conditions and is also close to the CRLB in the case of
SNR > 0 dB. Figure 2 shows that the performance of two methods is
again similar for a wide range of DOA values, although their RMSEs
are slightly higher than the CRLB at lower SNRs.

In the second experiment, we consider a L-shaped array with
P = 8 [13]. The 2-D DOA parameters of the single source are φ = 60◦
and θ = 30◦, and N = 2000 is assigned. Figures 3 and 4 plot the
RMSEs of the azimuth angle and elevation angle estimates versus SNR,
respectively. It is observed that the performance of both the proposed
GWLP and ML methods attain the CRLB for SNR > 0 dB.
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Figure 2. RMSE of DOA estimate versus DOA at SNR = 0 dB in
1-D case.
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Figure 3. RMSE of azimuth angle estimate versus SNR in 2-D case.
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Figure 4. RMSE of elevation angle estimate versus SNR in 2-D case.

5. CONCLUSION

The generalized weighted linear predictor approach for frequency
estimation has been applied for finding the direction-of-arrival (DOA)
of a single narrow-band source. The advantage of the proposed method
over some available methods is that it can give a direct estimate
with lower computation load. Extension to two-dimensional DOA
estimation is also discussed. It is demonstrated that the performance of
the proposed method is comparable to that of the maximum likelihood
algorithm and attains Cramér-Rao lower bound at sufficiently high
signal-to-noise ratio.
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