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Abstract—Space-Time Adaptive Processing (STAP) is a well known
technique in the area of airborne radars, which is used to detect weak
target returns embedded in strong ground Clutter, Jammers, and
receiver Noise. STAP has the unique property of compensating for
the platform motion induced Doppler spread, thus making detection of
slow targets possible. But there are other problems resulting from the
characteristics of the airborne radar that may limit the performance of
detection of the radar, for instance, the ambiguities (Range or Doppler
ambiguities) which are dependent on the value of the pulse repetition
frequency (PRF). When PRF is high, range ambiguities appear; when
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PRF is small, Doppler ambiguities appear; and both are present
when PRF is medium. To resolve Doppler ambiguities staggering of
PRF is used. And to resolve problem of high computational cost of
optimal space-time processing, reduced-rank methods are used. In this
paper, STAP processing on the airborne radar is briefly reviewed for
motivation, and the effect of a radar parameter dimensionality set on
the STAP and the Reduced-Rank STAP is discussed.

1. INTRODUCTION

Radar detection has opened new interesting research fields in both
military and civil contexts [1–6]. Signal detection using an array
of sensors has offered significant benefits in a variety of applications
such as radar, sonar, satellite communications, and seismic systems.
Employing an array of sensors overcomes the directivity and beam
width limitations of a single sensor. Additional gain afforded by
an array of sensors leads to improvement in the Signal-to-Noise-
ratio, resulting in an ability to place deep nulls in the direction of
interfering signals. Finally, a system using an array of sensors affords
enhanced reliability compared to a single sensor system. For example,
sensor failure in a single sensor system leads to severe degradation
in performance whereas sensor failure in an array results in graceful
performance degradation. An adaptive detector for possibly range-
spread targets has been considered by many authors [7–12].

In practice, the interference statistics, interference spectral
characteristics, and target complex amplitude are unknown. Thus, the
problem of adaptive radar target detection in interference is equivalent
to the problem of statistical hypothesis testing in the presence of
nuisance parameters. Actually, computing power permits the use of
well-known tools from statistical detection and estimation theory in the
radar problem. The Doppler-Wavenumber or angle Doppler spectrum
provides a unique representation of a signal in a three dimensional
plane. Hence, the problem of space-time adaptive processing (STAP)
may also be viewed as a spectrum estimation problem where the
two-dimensional Fourier transform of spatio-temporal data affords
separation of the desired target from interference. This scenario is
described in Figure 1.

STAP Outline: Space-time adaptive processing (STAP) is,
in the present day, an increasingly popular radar signal processing
technique for detecting slow-moving targets [13]. The space dimension
arises from the use of an array of “Ns” antenna elements and the time
dimension arises from the use of a coherent train of “Nt” pulses. The
power of STAP comes from the joint processing along the space and
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time dimensions, especially for detecting slow-moving targets [13–15].
The data collected by STAP radars can be viewed as a sequence,

in range, of “Ns×Nt” (2D) arrays, which can be viewed as matrices,
but are generally, treated as “NsNt × 1” (1D) vectors. These array
matrices or vectors are called “snapshots”. Each snapshot corresponds
to a specific range. The optimum STAP processor computes the
optimum weighted linear combination of the snapshot elements to
determine if a hypothetical target is present or not. This calculation
generally involves the estimation and the subsequent inversion of the
“NsNt × NsNt” covariance matrix (CM) of interference-plus-noise
(I + N) snapshots. Furthermore, the array geometry introduces an
element-to-element spatial correlation as shown in Figure 2. Thus in
the context of STAP, the unknown interference spectral characteristics
correspond to the unknown spatio-temporal correlation or covariance
matrix of the IN×1 complex-vector under the condition that the data
consists of interference alone. The estimation of the CM at any given
range is typically performed using snapshots at neighbouring ranges
(Figure 2). However, there are two major reasons that the optimum
processor (OP) cannot be used in practice, first, (i) the inversion of the
“I+N” CM requires on the order of “(NsNt)3” operations, which can
be prohibitive for real-time applications, and second, (ii) the number of
training snapshots needed to estimate the CM is between “2NsNt” and
“5NsNt”. For typical values of “Ns” and “Nt”, this amount of data is
most probably not available. These two problems have motivated the
design of what we call “suboptimum methods (SOMs)” that reduce
the size of the CM. Such methods lead to a drastic reduction of the
computational cost and of the number of training snapshots required.

To resolve Doppler ambiguities, staggering of PRF is used. And
to resolve problem of high computational cost of optimal space-time
processing, reduced-rank methods are used (Figure 2(b)). In this
paper, the effect of a radar parameter dimensionality on the space
time adaptive processing and the reduced rank adaptive processing on
the airborne radar and the staggered PRF on the Reduced-Rank STAP
performance is discussed.

2. DATA MODELS

Consider a linear Space-Time array with K equally spaced antennas
and a coherent pulse interval (CPI) consisting of J pulses (Figure 1(b)).
The data is processed at one range gate of interest, as depicted in
Figure 2(a), which corresponds to one slice of the CPI data cube. This
2-D snapshot is a space-time data structure which consists of element-
space information and pulse repetition interval (PRI) space-Doppler
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information. The snapshot is stacked column-wise to form a KJ × 1
vector X.
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Figure 1. (a) Space (angle)-time (Doppler) domain, (b) STAP
architecture.

Under the signal-absence hypothesis H0, the data vector X
consists of clutter, Jammers, and noise components only, i.e.,

X = Xc +Xj +Xn = n (1)

where Xc, Xj , and Xn represent the ground clutter, jammers, and
white noise, respectively, and are assumed to be independent, zero-
mean, complex, multivariate Gaussian. Under the signal-presence
hypothesis H1, a target signal component also appears in the data
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vector, i.e.,
X = αS + n (2)

where α = |α| ejφ is a complex gain whose random phase φ is uniformly
distributed between 0 and 2π, and S the signal steering vector defined
as follows:

S = St ⊗ Ss (3)

where ⊗ represents the Kronecker product, and Ss ∈ CK and St ∈ CJ

are the spatial and temporal steering vectors respectively. Denoting

Fs =
d sin θd
λ

, Ft = fdTr (4)

As the spatial and normalized Doppler frequencies of the target signal,
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Figure 2. (a) the classical STAP data cube processing. (b) The
reduced rank STAP.
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respectively,

Ss =




1
e−j2πFs

e−j2π2Fs

...
e−j2π(K−1)Fs



, St =




1
e−j2πFt

e−j2π2Ft

...
e−j2π(J−1)Ft




(5)

where Tr is the PRI and is equal to the inverse of the PRF and θd and
fd are the angle and Doppler, respectively, of the desired look direction.

Covariance matrix: The space-time covariance matrix is defined
as

R = E
[
nnH

]
= Rc +Rj +Rn (6)

where Rc, Rj and Rn are the covariance matrices of the clutter,
Jammers, and noise, respectively.

Receiver noise: Thermal noise is assumed white across the array
and over the frequency band of interest. Stated another way, sensor
outputs are uncorrelated to each other and uncorrelated to themselves.
The resulting covariance matrix is the unity matrix scaled by the noise
power

Rn = σ2I (7)

It should be noted, however, that when the covariance matrix
is estimated from the data, the noise covariance matrix will not
necessarily have the form shown in Equation (7).

Clutter: The clutter extends over a sector of angles, and due
to the flight geometry of the airborne radar, it covers a band of
Doppler frequencies. It is assumed that the clutter can be adequately
approximated by dividing the angular region corresponding to the
range of interest into patches and computing the return from each
patch. The return from each clutter patch is similar to the return
from the target. Therefore, the clutter covariance matrix is given by

Rc =
NC∑
k=1

ξ
(
StkS

H
tk

)
⊗

(
SskS

H
sk

)
(8)

where ξ is the clutter-to-noise ratio (CNR); Nc is the number of clutter
patches, and Ssk and Stk are the spatial and temporal steering vectors,
respectively, of the kth clutter patch.

Jammers: Jammers signals can be viewed as sources at discrete
angles. In general, we can model jammers to extend over the full range
of baseband frequencies. Consider J barrage noise jammers impinging
upon the array and assuming that the jamming from pulse to pulse
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is uncorrelated and that the jammers are independent, the jammer
covariance matrix is given by:

Rj =
J∑

i=1

J∑
j=1

αiα
H
j ⊗ SsiS

H
sj = AEAH (9)

where

A = [Ss1, Ss2, . . . , SsJ ] (10)

E = diag
(
σ2ξ1, σ

2ξ2, . . . , σ
2ξJ

)
(11)

And
αi =

[
αi0, αi1, . . . , αi(K−1)

]
(12)

is the random amplitude vector of the ith barrage noise jammer, and
ξi is its jammer-to-noise ratio (JNR).

The eigenanalysis of the space-time covariance matrix reveals a
few large eigenvalues and a large number of small eigenvalues. The
number of large (principal) eigenvalues is predicted by the Landau-
Pollak Theorem [16]. The theorem states that the system energy is
essentially concentrated on its largest r = 2BTr +1 eigenvalues, where
B is the bandwidth covered by the signals received by the array and
Tr is the total duration of those signals across the array structure.

3. REDUCED-RANK PROCESSING WITH KNOWN
COVARIANCE

The objective of partially adaptive STAP is to break one large adaptive
problem into several smaller adaptive problems while still achieving
close to optimum performance. This is possible since, as stated before,
the interference covariance matrix is not of full rank. Partially adaptive
STAP algorithms start by transforming the data with a KJ×r matrix
V . Studies by many authors (e.g., Ward [17], Haimovich [16]) have
been concerned with subspace techniques to reduce the computational
load while approximating the clutter rejection performance of the
optimum processor to the greatest extent. The number of significant
clutter eigenvalues indicates the minimum number of degrees of
freedom (or, equivalently, the dimension of the clutter subspace)
required for effective clutter rejection. Figure 3 shows a typical
eigenspectrum for a sidelooking array.

Here we consider the RR direct form processor (DFP) shown in
Figure 2; the weight vector W is an r × 1 weight vector designed to
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d
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Figure 3. Eigenvalues of space-time covariance matrix.

maximize the output SINR. The full dimension (i.e., without V ) weight
vector of the direct form processor is given by

W = R−1S (13)

And the RR weight vector by

W =
(
V HRV

)−1
V HS (14)

The SINR equation for the full dimension direct form processor
is [18]:

SINRopt = |α|2 SHR−1S = |α|2
KJ∑
i=1

∣∣∣fH
i S

∣∣∣2

λi
(15)

where {fi}KJ
i=1 are the eigenvectors of R and {λi}KJ

i=1 are the associated
eigenvalues. With the RR weight vector defined as in (14), the output
SINR for the RR direct form processor is given by [19]:

SINRRR = |α|2 SHV
(
V HRV

)−1
V HS (16)

Now, if we restricted the r columns of V be a unique subset of the
eigenvectors of R, then we can rewrite (16) as:

SINRRR =
∣∣∣α2

∣∣∣SHV Λ̃−1V HS =
∣∣∣α2

∣∣∣
r∑

i=1

∣∣∣vH
i S

∣∣∣2

λi
(17)

where Λ̃ is a diagonal matrix of the eigenvalues associated with the r
eigenvectors and {vi}r

i=1 denote the columns of V .
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3.1. Principal-Components Method (PC)

The PC method (also known as the eigencanceler method [19]), as its
name implies, refers to the retention of only those eigenvectors of the
interference-only covariance matrix with corresponding eigenvalues of
significant magnitude.

For the DFP, the PC method retains the r dominant eigenvectors
of the full interference covariance matrix R. The resulting PC-based
DFP weight vector W = WPC−DFP has the form:

WPC−DFP = S −
r∑

i=1

λi − λmin

λi

(
fH

i S
)
fi (18)

where λ1 ≥ λ2 ≥ . . . ≥ λKJ .
The rank-reducing transformation, V ∈ CKJ×r is again of the

form
V = [f1 f2 . . . fr] . (19)
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Figure 4. Output SINR DFP-PC performances as function of rank.

3.2. SINR Metric Method

The output SINR of the RR direct form processor given by (17) is
only a partial sum of the output SINR for the fully adaptive processor
given by (15). Thus, the RR direct form processor will incur a loss in
SINR performance. The objective is to select the columns of V as the
eigenvectors of R that minimize the loss in SINR performance, which
is equivalent to maximizing the partial sum given in (17). Clearly, the
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partial sum is maximized by selecting the r columns of V to be the
eigenvectors which maximize the quantity [20]

∣∣∣fH
i S

∣∣∣2

λi
(20)

This is referred to as the SINR metric.
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4. IMPROVEMENT FACTOR AND STAGGERED PRF

4.1. Improvement Factor

The system performance of the processor can be exhibited by the
Improvement Factor (IF) when the ground clutter is assumed to be
Gaussian random distribution. The IF is defined as the ratio of output
of the signal and interference-plus-noise ratio (SINR) against input
SINR. The optimum improvement factor is easily calculated as [13–15]

IFopt =
SHR−1SSHR−1Str (R)
SHR−1RR−1SSHS

= SHR−1S
tr (R)
SHS

(21)

and for a reduced-rank processing, the latter is given by

IFRR = SHV
(
V HRV

)−1
V HS

tr
(
V HRV

)

SHV V HS
(22)
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Notice that a clutter notch appears at the clutter frequency in
look direction. The width of the clutter notch is a measure for the
detectability of slow targets.

4.2. Staggered PRF

It is well known that a staggered PRF offers a number of attractive
features:

• The radial target velocity can be estimated unambiguously.
• Blind velocity zones (ambiguous clutter notches) are suppressed.

There are two methods of staggering [15]: quadratic and pseudo-
random. In this paper, we use a quadratic staggering, which is an
increasing (or decreasing) of the PRI in certain steps, for instance in
a quadratic fashion. Thus, the PRI of the temporal frequency in the
temporal steering vector of target, or clutter is multiplied by a term(
1 + ε j

J

)
for each jth pulse.

5. DISCUSSION AND RESULTS

In this section, we examine the SINR performance as a function of
the number of eigenvectors used in the reduction transformation for
the SINR metric and the PC version of the direct form processor. We
also present the effect of quadratic staggered PRF on the performance
of Reduced-Rank processing.

The simulated radar has a linear sidelooking array of 14
antenna elements spaced at half a wavelength with 16 pulses in
a coherent processing interval (CPI). The elevation angle is fixed
(prebeamformed) and the azimuth angle represents the only free
parameter. The dimension of the adaptive processor is KJ = 224.
The platform velocity is Vr = 250 m/s, and the transmit frequency is
1240 MHz. The noise environment consists of two barrage jammers and
ground clutter. The two jammers have azimuth angles of −60 and 60◦,
with jammer-to-noise ratios (JNRs) of 40 and 30 dB, respectively. The
clutter-to-noise ratio (CNR) is 20 dB. The target has a signal-to-noise
ratio (SNR) of 0 dB, representing a small, nonfluctuating, constant
radar-cross-section target.

It is instructive to consider the SINR performance for each of
partially adaptive methods as a function of rank. This is presented in
Figure 6. Here, it is evident that the principal-component method is
not able to obtain the optimal output SINR until the rank equals
the dimension of the noise-subspace eigenstructure. Because the
principal-component approach is not optimal as a function of rank, the
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curve in Figure 6 demonstrates that there is an immediate and large
degradation in performance for a small rank. An examination of the
plot in Figure 6 reveals that the SINR metric method outperforms the
PC method as the transformation rank is reduced below full dimension,
attesting to the importance of incorporating a cost function into the
process of selecting the rank reduction transformation.

Figure 7 shows the typical Improvement Factor IF as a function
of the Doppler frequency, normalized of the optimum DFP processor,
with full range and unambiguous staggered PRF. Notice that under

Figure 6. Output SINR performance as function of rank.
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optimum conditions (no distortions), the notch is too narrow, which
considerably enhances the slow target detection-capacity.

The effect of the array dimensionality is illustrated in Figure 8,
where K are taken = 3, 6, 12 and 24, respectively. One can see that
as the number of K is duplicated, the improvement factor increases
by 3 dB in the pass-band region, and the notch is thereby, narrower.
We can thus hypothesize that the clutter notch follows the same
proportional tendency as a function of the number of pulses [14].
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The number of Clutter’s eigenvalues of the space-time covariance
matrix is given by Ne = K + J − 1. For a given total KJ network’s
dimensionality, the number of eigenvalues is obtained whenK = J [14].
In Figure 9, and for the same total space-time sample size ofKJ = 144,
the plots are shown for a different ratios of K/J and the same product
of K×J . We clearly show that for K = J = 12, the minimum number
of eigenvalues is obtained, which points out the critical K/J array
choice for the STAP problems.

6. CONCLUSION

In this paper, we have extended the effect of staggered PRF used by
Klemm [13–15] and Reed [21, 22] with the optimum processor to the
Reduced Rank processing with known covariance matrix. We applied
the quadratic stagger pattern on two different RR methods, principal
components and SINR metric presented from a direct form processor.
The simulation results were presented to show the comparison between
these two methods while using the Improvement Factor IF to exhibit
the performance of the processor, using quadratic staggered PRF for
eliminating the Doppler ambiguities and then improving the detection
probability. It was also demonstrated that the RR approaches provide
comparable performance as the optimum processing with reduced
ranks.

Areas for future investigation include continued research into com-
putationally efficient implementations, including parallel processing
implementations, application to real STAP data sets, intelligent train-
ing strategies, especially for 3D and circular STAP, and, for the signal-
dependent methods, extensions and modifications with greater robust-
ness to steering vector mismatches.
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