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Abstract—A heuristic particle swarm optimization (PSO) based
algorithm is presented in this work and the novel hybrid approach
is applied to linear array synthesis considering complex weights
and directive element patterns so as to analyze its usefulness and
limitations. Basically, classical PSO schemes are modified by
introducing a tournament selection strategy and the downhill simplex
local search method, so that the hybrid algorithms proposed combine
the strengths of the PSO to initially explore the search space, the
pressure exerted by the genetic selection operator to manage and
speed up the search, and finally, the ability of the local optimization
technique to quickly descend to the optimum solution. Four classical
real-valued PSO schemes are taken as reference and synthesis results
for a 60-element linear array comparing those classical schemes and
the hybridized ones are reported and discussed in order to show the
improvements achieved by the hybrid approaches.

1. INTRODUCTION

The particle swarm optimization technique (PSO) is a modern
heuristic search method that has aroused great attention among
the electromagnetics community in many applications and research
areas during the last decade, demonstrating throughout the literature
its ability to manage high-dimensional and multimodal optimization
problems in a near-optimal manner [1–8]. Unlike many other stochastic
population based search algorithms, the PSO method, inspired by the
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behavior of organisms such as bird-flocking, has gained practitioners
because it is easier to implement and tune, using only one operator to
manage the swarm and carry out the optimization: the velocity of the
particles. Furthermore, novel PSO based algorithms are continuously
emerging to overcome the limitations of the well-known classical PSO
schemes and thus, to improve overall performance [7–16].

Different heuristic PSO-based approaches can be found in the
literature applied to array synthesis. For instance, in [7] real,
binary and multiobjetive PSO implementations have been applied to
non-uniform and thinned array design. Moreover, a modified PSO
algorithm is successfully applied in [10] to amplitude-only synthesis in
both linear and planar arrays, and in [17] PSO and genetic algorithm
(GA) are compared when applied to phase-only, amplitude-only and
complex synthesis of linear arrays. The authors have also applied
classical [18] and hybrid versions [19] of the PSO optimizer to linear
array synthesis.

In this paper, classical PSO schemes [20] have been modified by
introducing one of the most effective selection strategies commonly
used in GA, the tournament selection strategy [19, 21], and the
downhill simplex method, a geometric approach that does not require
derivatives [22]. Two hybrid approaches have been considered: 1) in
the so-called HPSOS, the PSO based scheme is used to make the swarm
explore adequately the hyperspace in combination with tournament
selection to redirect and speed the search towards the apparently most
profitable areas just until it reaches a certain residual error, and then
the local search algorithm is launched in order to quickly lead to a
solution; 2) a hybrid scheme, HPSO, identical to the previous one
but removing the selection strategy to let the PSO scheme explore
appropriately the multidimensional search space without any external
pressure.

The behavior of this kind of hybrid approaches, which are suitable
for solving high-dimensional problems like the one considered here
(linear array feed synthesis), needs to be analyzed in statistical terms
as shown in [23–25] due to the no free lunch theorem. In this work, this
statistical analysis is carried out by taking 25 independent runs for each
optimization scheme, averaging the results using several indicators to
appropriately assess the accuracy achieved by the algorithms for the
problem at hand.

The following sections include a brief mathematical description of
the problem at hand, a general overview of the classical PSO schemes
considered (global and local PSO with synchronous and asynchronous
updates of the swarm), as well as the hybridized approaches proposed
(HPSOS and HPSO); along with a summary of results comparing the
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performance of classical and hybrid optimization schemes, considering
as the representative example the synthesis of the elements complex
weights of a 60-elements z-directed linear array.

2. SYNTHESIS OF LINEAR ARRAYS

Linear array complex synthesis has been considered as the theoretical
and reference problem to test the PSO-based approaches proposed.
Basically, if mutual coupling effects are neglected and φ dependence
omitted, the far-field radiation pattern of a z-directed linear array at
a certain direction given by the angle θ, is given by

FF(θ) = EP(θ) · AF(θ) (1)

in which EP(θ) represents the element pattern and AF (θ) is the array
factor, which for a linear array consisting of N elements uniformly
spaced a distance d on the z-axis is given by

AF (θ) =
N∑

n=1

an · ej(2π(n−1)(d/λ) cos(θ)+αn) (2)

with an and αn representing the amplitude and phase of each
element complex weight to be determined in case complex synthesis
is considered. Thus, the goal is to optimize the couples (an, αn) so
that the FF (θ) satisfies certain far-field pattern specifications given in
terms of upper and lower masks, UM and LM respectively, described
by the limits imposed at P angular directions, θp. For both classical
and hybrid PSO based algorithms, the vector C in (3) contains the
whole set of parameters to be optimized and (4) presents the fitness
or cost function to be minimized and used to weigh up the accuracy
achieved by any vector C.

C = (a1, α1, . . . , an, αn, . . . , aN , αN ) (3)

F =
P∑

p=1

min (|FFp(dB)| − |UMp(dB)| , 0)2

+
P∑

p=1

min (|LMp(dB)| − |FFp(dB)| , 0)2 (4)
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3. PARTICLE SWARMS AND THE HYBRID
APPROACH

An overview of classical real-valued PSO schemes along with a detailed
description of the novel hybrid approach is presented in the following
subsections.

3.1. Classical PSO Schemes

Let us consider a swarm consisting of K particles, i.e., a set of vectors
C in (3), in which each particle is represented by its position in the D-
dimensional search space, Xk = (xk,1, . . . ,xk,D). Each particle moves
iteratively (iteration i to i + 1) to new positions Xi+1

k with a velocity

Vi+1
k =

(
vi+1

k,1 , . . . ,vi+1
k,D

)
as given by (5)–(6)

Vi+1
k = wVi

k + c1r1(pbest − Xi
k) + c2r2(gbest − Xi

k) (5)

Xi+1
k = Xi

k + Vi+1
k · ∆t (6)

in which w is the inertial weight, c1 and c2 are acceleration constants
that specify how much each particle is influenced by the best location
ever found by itself, pbest, and by the best position ever found by
the whole swarm, gbest ; r1 and r2 represent two independent random
numbers and ∆t is the time step, usually chosen to be one [1, 20].

Depending on how and when particles cooperate and share
information, four classical PSO schemes can be outlined: the PSO
with either synchronous or asynchronous updates of the swarm and a
global or a local topology (PSO-AG, PSO-SG, PSO-AL and PSO-SL,
respectively), [20]. The PSO scheme with asynchronous updates and a
global topology for the swarm is the most widely used in the literature
as it proves to be the most efficient one in computational terms.

3.2. Hybrid Schemes

Classical PSO schemes have been modified by introducing one of
the most effective selection strategies commonly used in genetic
algorithms (GA), the tournament selection strategy (TS) [21], and a
local optimizer, the downhill simplex method [22].

The selection mechanism reinforces the influence of the fitness
function on the PSO process. As occurs in GA, the fitness-
weighted selection process increases the search pressure over the swarm,
propagating iteratively several copies of the best particles and thus,
speeding up convergence. However, selection must be applied in such
a way that some relatively unfit particles also propagate iteratively
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so as to preserve diversity within the swarm, avoiding a premature
convergence to a local solution. That is why the hybrid scheme
proposed uses TS with a subpopulation of two particles that compete
on the basis of their fitness value. For larger subpopulations, the
pressure exerted by the selection operator becomes too high because
too many copies of the same particles propagate, driving the search
towards deceptive solutions. Furthermore, if the effect of a local search
algorithm is added, then the resulting hybrid algorithm (HPSOS)
increases even more the pressure over the swarm, speeding up the
optimization but, in contrast, the effect of both selection and local
search together may be harmful as these techniques combined promote
the premature convergence of the population.

As an alternative to HPSOS, another hybrid approach can be
proposed, just by removing TS from the HPSOS (HPSO). For a
single run, the HPSO allows the classical PSO scheme considered to
explore appropriately the solutions space during the initial iterations
and just when a certain fitness value has been achieved (Flaunch), the
downhill simplex method is launched to quickly descend the swarm
to an optimum fitness value or solution (Fgoal). The Flaunch value is
problem dependent and is selected by examining the fitness evolution,
so that when the convergence slows down, i.e., the minimum fitness
value achieved by the swarm stagnates or simply exhibits a very small
improvement during several iterations, the local optimizer is launched.
On the one hand, the HPSO will exhibit a slower convergence than the
HPSOS but, on the other hand the success rate will be higher.

The following steps summarize the HPSOS algorithm considering
the classical PSO-AG scheme as the basis:

i) Initialize the swarm. Generate K particles with random positions
and velocities, Xk and Vk. Evaluate their fitness, Fk, and assign
pbestk = Xk and make gbest equal to that Xk with (minFk).

ii) Until maximum number of iterations is reached
ii.1) Repeat for all particles

ii.1.1) Update velocity Vi+1
k

ii.1.2) Update position Xi+1
k

ii.1.3) Evaluate fitness, Fk = f(Xk)
ii.1.4) Update personal best?, pbestk = Xk

ii.1.5) Update global best, gbest?
ii.2) Next particle
ii.3) If residual error Flaunch is met

ii.3.1) Use swarm to build vertexes of the Simplex
ii.3.2) Apply reflection, expansion and/or contraction opera-
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Figure 1. Comparison of classical and hybrid PSO schemes taking
as reference the evolution of the normalized averaged fitness value
computed considering only successful runs.

tions over the simplex to improve the solution during the
remaining iterations or until Fgoal is obtained

ii.3.3) Solution: current best vertex
ii.3.4) END
Otherwise
ii.3.5) Apply K tournaments to build the new swarm

iii) Next iteration

The HPSOS approach becomes the HPSO algorithm just by
removing step ii.3.5.

4. RESULTS

As a canonical problem to compare both classical PSO schemes and
the hybridized approaches, let us consider the synthesis of the elements
complex weights for a linear array consisting of 60 half-wavelength
spaced radiators lying on the z axis and with sin θ element patterns,
in order to comply with the secant squared far-field pattern depicted
in Fig. 2, which exhibits −20 dB max sidelobes from 0◦ to 90◦, a tilt
angle of 2◦, a secant squared pattern with a 1 dB ripple level from
96◦ to 128◦, and −30 dB max sidelobes from 130◦ to 180◦. The goal
is to minimize the cost function given in (4) by optimizing the 120-
dimensions C vector of (3) that satisfies the far-field radiation pattern
masks proposed. The dynamic range allowed for the elements complex
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weights are an ∈ [0, 1] and αn ∈ [0, 360◦), respectively. Moreover,
and based on previous work [20], the following parameters have been
considered for the classical PSO schemes: inertial weight w = 0.729,
acceleration constants c1 = c2 = 1.49445, maximum velocity for
particles, Vmax, equal to half the dynamic range on each dimension of
the search space, reflecting walls, a swarm with K = 121 particles, and
a neighborhood size for the local topologies of Nn = 20 particles [20].
Finally, twenty five independent runs have been considered to carry
out the analysis so as to take into account the stochastic nature of
the PSO algorithm, and the results have been properly averaged to
compare classical and hybrid schemes, using parameters such as the
success rate (SR), representing the percentage of runs that converge
(Fgoal < 0.75 in Equation (4) with a maximum of 400000 fitness
function calls or 3306 iterations allowed), the average number of fitness
function evaluations (NF avg) necessary to reach the minimum residual
error of Fgoal = 0.75, and the averaged CPU time (Tcpuavg), both,
NF avg and Tcpuavg computed considering only the successful runs.

Regarding the hybrid schemes HPSOS and HPSO, both are only
combined with the classical PSO-AG scheme because it is the most
efficient one [20] as shall be demonstrated forthwith. Furthermore, the
downhill simplex method will be launched when the PSO-AG reaches
a residual error of Flaunch = 9.

Table 1. Comparison of classical and hybrid PSO schemes (Intel
Q6600 2.4 GHz).

Parameter PSO-AG PSO-SG PSO-AL PSO-SL HPSOS HPSO

SR (%) 88 80 72 60 56 96

NFavg 197516.1 214381.7 271315.6 304492.4 118751.5 141010.8

Tcpuavg(sec) 845.7 920.1 1165.4 1305.7 507.1 604.3

The results comparing the performance of the classical PSO
schemes and the two hybridized ones are summarized in Table 1.
Let us focus first on the four classical PSO schemes. According
to the computational cost, which is directly related to the NF avg

factor, which at the same time is related to the Tcpuavg, the PSO-
AG outperforms the other three classical schemes, saving up to 8.1%,
27.4% and 35.2% of CPU time with regard to PSO-SG, PSO-AL and
PSO-SL schemes, respectively. Moreover, the PSO-AG obtains the
highest SR, which shows the robustness and ability of the scheme to
avoid deceptive regions in such a high-dimensional and multimodal
search space. Regarding the results obtained for the hybrid schemes,
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Figure 2. Representative results for a secant squared far-field
radiation pattern considering a linear array with 60 elements and a
single run. (a) Normalized far-field pattern synthesized with the HPSO
scheme. (b) Associated amplitude and phase for the optimized complex
weights.

different conclusions can be summarized. First of all and using the
Tcpuavg factor as the metric to perform the comparison, it can be
concluded that any of the hybrid approaches proposed in this work,
HPSOS or HPSO, clearly outperforms classical schemes. For instance,
the HPSOS scheme is 40.1%, 44.9%, 56.5% and 61.1% faster than
PSO-AG, PSO-SG, PSO-AL and PSO-SL schemes, respectively. For
the HPSO algorithm, the improvements in terms of computational cost
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reduce slightly and the HPSO scheme saves 28.5%, 34.3%, 48.1% and
53.4% of CPU time with regard to PSO-AG, PSO-SG, PSO-AL and
PSO-SL schemes, respectively. However, on comparing the SR values,
the HPSO turns out to be more robust than the HPSOS scheme. Unlike
HPSO, for which only one run did not converge to a valid solution,
almost half of the HPSOS runs reached a misleading solution. The
reason why the HPSOS offers such an unstable behavior is associated
with the selection operator. Tournament selection makes the swarm
move from the beginning towards those specific regions indicated by
the best particles in an attempt to speed up the search, but at the
same time it avoids visiting other regions that may contain the global
solution. In short, the TS applied in the HPSOS scheme makes the
swarm concentrate around such an enclosed region when the local
search algorithm is launched that the simplex is made up of vertexes
very close to each other, restricting the search of the downhill simplex
method and making it more difficult to reach the Fgoal limit. Finally,
the reason why the HPSO even increases the SR with regard to the
classical PSO-AG is justified by the right selection of the Flaunch value
for the HPSO scheme. If the downhill simplex method is launched too
early, a premature convergence to a deceptive solution can appear as
the global search technique has not yet suitably explored the search
space. If, however, the local search algorithm is not launched until the
PSO scheme has reached a relevant minimum, then the benefits of the
HPSO techniques are wasted.

Complementary results that agree with those summarized in
Table 1 are shown in Fig. 1, in which the convergence of the whole set of
algorithms is compared when representing the evolution of the averaged
fitness value, Favg, against the number of cost function evaluations.
The results show again that the HPSOS and even the HPSO exhibit
on average a far faster convergence than any of the classical PSO
schemes considered, demonstrating the improvements achieved and the
usefulness of the hybridized approaches.

Finally, Fig. 2(a) shows as an illustrative example the far-
field radiation pattern obtained for a single run with the HPSO
algorithm, including in Fig. 2(b) the associated complex weights
(an, αn) optimized by the algorithm.

5. CONCLUSION

Two hybrid particle swarm based optimization techniques that
combine the capacity of PSO to explore the search space in the early
stages, the ability of a selection operator to drive the swarm faster
in case it is considered, and the skill of the local downhill simplex
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method to quickly descend to a solution, have been presented in this
work as useful approaches and alternatives to well-known classical PSO
schemes, taking as reference to carry out the analysis its application
to linear array synthesis using complex weights.

The results obtained and presented in this paper demonstrate
that any of the hybridized approaches proposed, that is, the one
combining the PSO with asynchronous updates and a global topology
(PSO-AG) with tournament selection and the downhill simplex method
(HPSOS) or the one that combines the PSO-AG with the local search
method (HPSO), obtain accurate results, outperform classical PSO
based schemes, are far less CPU time consuming and prove to be an
efficient and powerful alternative to the classical PSO algorithms.

Regarding the hybrid approaches, the improvements achieved in
terms of computational cost are more significant for the HPSOS but,
on the contrary, this shows a more unstable behavior than the HPSO
algorithm, influenced by the application of tournament selection.
In fact, the main drawback of the hybrid selection-based approach
(HPSOS) is related to the reduction experimented by the SR, due to
the effects of the search pressure exerted by the selection operator that
propagates iteratively one or more copies of the best particles in the
swarm, making diversity vanish.
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19. Pérez, J. R. and J. Basterrechea, “Particle swarm optimization
with tournament selection for linear array synthesis,” Microwave
Opt. Technol. Lett., Vol. 50, No. 3, 627–632, 2008.
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