
Progress In Electromagnetics Research Letters, Vol. 7, 69–78, 2009

DESIGN OF A BROADBAND TRANSITION USING THE
CONSTANT IMPEDANCE STRUCTURE APPROACH

P. Fuerholz and A. Murk

Institute of Applied Physics
Sidlerstrasse 5, Berne 3012, Switzerland

Abstract—Transitions from circular waveguides to rectangular
waveguides are used in many situations. One particular case is
between the feed of a circular corrugated horn antenna and following
rectangular waveguide structures. Since the field patterns are not
the same on both sides the conversion from rectangular to circular
waveguide always results in a certain amount of power reflected back
in one waveguide. Much effort has been put in designing special
converters which reduce this effect. For many designs, reflection is
reduced by introducing a certain number of waveguide steps. By
adjusting the distance between these steps, one can get destructive
interference of the returned signal at specific frequencies. In this paper,
an alternative approach, the constant impedance structure (CIS) has
been chosen. This eliminates the need to design a waveguide converter
for minimum return loss at discrete frequencies. The transition
obtained by this approach is compared to a transition based on linear
surface interpolation.

1. INTRODUCTION

Waveguide transitions are used where a transition from circular to
rectangular waveguide elements is needed. Although microwave cir-
cuits are normally built using rectangular waveguide, for propagation
to free space circular is more favorable. Therefore, a conversion from
one waveguide type to the other needs to be made. The easiest way
to do this is simply to connect a rectangular and a circular waveguide.
For such a simple transition, the return loss is at −10 dB. This is much
too high for many applications. An alternative approach is to conically
drill the circular waveguide into the rectangular one. Such a transition
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is very easy to manufacture. However, the only parameter affecting
the return loss is the length. In order to perform well in terms of
return loss, the waveguide converter needs to be several wavelengths
long. A alternative approach is to use a linear interpolation conversion
from rectangular to circular waveguide, this conversion is referred to as
lofted conversion in this paper. This design is more difficult to realize
than the drilled conversion. On the other hand, in terms of electrical
performance, this design exceeds the drilled conversion. A very promis-
ing design for a waveguide converter places several pieces of constant
cross-section between the circular and rectangular waveguide [1, 2]. At
each junction, some power is returned. By adjusting the length of the
waveguide pieces, one can have partial destructive interference of the
returned signal between two adjacent waveguide junctions at discrete
frequencies.

In this paper, a different approach is considered. Instead of using
a sequence of waveguides with constant cross-section, we distort the
cross-section shape of the transition to minimize return loss. More
precisely, we force the transition to have constant impedance for the
first propagating mode above cutoff along the waveguide. Application
of this approach is presented. The design technique is presented in
Part 2 of this paper wile Part 3 shows the results of a numerical study
varying the total length of the transition. The computation of the
return loss and the modal analysis is done for the drilled transition,
the optimized drilled transition and the lofted transition.

2. THE EQUIVALENT IMPEDANCE STRUCTURE
APPROACH

From circuit theory, it is well known that an transversal impedance
jump in a transmission line results in power reflected backward. The
relation between the return loss ρ, and the transversal impedance of
two transmission line segments, denoted as Z1 and Z2 is

ρ =
Z1 − Z2

Z1 + Z2
. (1)

This relation is only valid for TEM mode. In our case, we use either
TE or TM-modes carrying waveguides. Therefore, the transmission
line theory needs to be extended in order to be correct in this case.
Assuming a single propagating waveguide mode in both waveguides at
the junction, the return loss is expressed as

ρwg =
Z1 − q2Z2

Z1 + q2Z2
(2)
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using mode-matching theory [3]. A waveguide mode is defined as an
eigenvalue/eigenfunction combination of

∇×∇× �E − k2εr
�E = 0 (3)

with Dirichlet boundary conditions, �E as the electric field (eigenfunc-
tion) as k2 the squared radial propagation constant (eigenvalue), and
εr denoting the relative electric permittivity on the problem domain.
The eigenfunctions are subject to the orthogonality relation

δmoδnp =
∫∫

Ω1

�Emn
�Eop (4)

with δmo, δnp representing the Kroenecker delta function and Ω1

signifying the surface on which (3) is defined. q denotes the overlap
integral of the two field configurations

q =
∫∫

Ω

�Emn
�Eop. (5)

where Ω is the surface enclosed by the smaller waveguide along the
junction. As the previous sentence suggests, Equation (2) is only valid
if the border of the surface of the larger waveguide at the junction
completely surrounds the border of the smaller waveguide.

The return loss of the waveguide transition vanishes completely
when the field coupling value q is equal to one, and when the
impedance is equal in both waveguide pieces. Because of the differing
field configurations, the field coupling from a circular to rectangular
waveguide mode is less than one. We do not have control over this
parameter. However, the impedance along the transition can be
controlled by varying the shape of the waveguide transition.

2.1. Design of a CIS-based Transition

We start by designing a waveguide transition based on a rectangular
waveguide with a conical opening into the circular waveguide. Let the
cutoff frequency of the waveguide on both sides be fCutoff. From basic
waveguide theory, the width of the rectangular waveguide, denoted as
a, is

a =
c

2fCutoff
(6)

with c being the speed of light. Because we want single-modedness of
the largest possible bandwidth, we choose the rectangular waveguide
height b to be a/2. For the circular wave radius r, we obtain

r =
χc

fCutoff2π
(7)
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where χ is the first zero of the derivative of the Bessel function of the
first kind of order 1. We proceed by computing the radial wavenumbers
of the TE waveguide modes for many cross-sections at different axial
positions representing different cross-section shapes. This has been
done numerically using finite elements modelling (FEM). Since by
design the cutoff frequency of the lowest-order mode is the same
for the rectangular and the circular waveguide, the radial propation
constant for the lowest-order mode is also equal at the left and right
end of the transition (see Fig. 1). The index shown on the x-axis of
Figs. 1–3 represents the cross-section shape of the transition with 1
being a rectangular cross-section and 20 being a circular cross-section.
However, in the middle of the transition it increases. This implies that
we have return loss because of varying impedance in the transition.
Additionally, the effective cutoff frequency of the transition increases
since the mode is below cutoff at the center of the transition for
the lower part of the frequency spectrum. The cutoff frequency is
mainly affected by the size of the waveguide, so we have to increase
the size of the waveguide systematically to correct for the increase of
radial wavenumber along the converter. For this, the radial waveguide
number curve for the lowest order mode is interpreted as an increase
factor for the width of the rectangular waveguide, while retaining the
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Figure 1. Radial wavenumber of the four lowest order waveguide
modes for the drilled transition.
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radius of the circular waveguide and the height of the rectangular
waveguide at each segment. We choose a linear relation between the
increase factor If and the radial wavenumber kr

If(Pos) =
(kr(Pos) − kr(1))
max(kr − kr(1))

0.38a (8)

with 0.38 being an arbitrary scaling factor. Pos denotes an integer
index, which marks the positions along the converter. In an iterative
loop, the radial wavenumbers are recomputed, the increase factors
are computed and the geometry is altered. This iteration has been
repeated twenty times. Figure two shows the radial wavenumbers of
the four lowest order modes along the transition for the optimized case.

3. EXAMPLE CASE AND NUMERICAL ANALYSIS

The CIS concept has been applied to a waveguide transition operating
at a frequency band around 22 GHz. For the lower cutoff frequency,
we choose 20 GHz. Thus we obtain a rectangular waveguide part with
a cross-section of 7.5 × 3.75 mm and a circular waveguide part with a
radius of 4.4 mm. For the example design the lengths of the straight

2 4 6 8 10 12 14 16 18 20
3

3.5

4

4.5

5

5.5

6

6.5

7 mode 1
mode 2
mode 3
mode 4

k
r

 [
1/

m
] 

position along converter, left: rectangular, right: circular 

Figure 2. Radial wavenumber of the four lowest order waveguide
modes for the optimized transition.
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Figure 3. Radial wavenumber of the four lowest order waveguide
modes for the lofted transition.
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Figure 4. Return loss versus frequency and transition length for the
non-optimized case.
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Figure 5. Return loss versus frequency and transition length for the
optimized case.
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Figure 6. Return loss versus frequency and transition length for the
lofted transition.
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waveguide pieces are 7.5 mm (see Figs. 7–9). The section between
the straight waveguide parts is denoted converter section. The single
moded frequency band thus ranges from 20 to 26.1 GHz. For this
frequency range, the return loss computed for many lengths of the
waveguide converter section and for both the non-optimized and the
optimized transition. This is accomplished using the 3D RF toolbox
from COMSOL multiphysics. In a rough convergence analysis, which
consists of variations of the FEM-mesh, the computation uncertainty

Figure 7. Picture of the non-optimized transition.

Figure 8. Picture of the optimized transition.
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Figure 9. Picture of the lofted transition.

is assessed to be 0.5 dB. Fig. 4 shows the return loss versus frequency
and length of the transition for the non-optimized case. For very short
lengths, the return loss is close to the value for a direct connection
between circular and rectangular waveguide. For longer transitions,
the return loss decreases at the upper end of the frequency band. At
the lower end, we observe an increase in return loss. This is because the
radial wavenumber rises at the center of the transition, as pointed out
in Part 2 of this paper. For the optimized case, whose return loss versus
frequency and length is plotted in Fig. 5, the return loss decreases
with increasing length over nearly the entire bandwidth. Furthermore,
we can have a return loss below −40 dB at just a few wavelengths.
However the return loss curve does not show the deep minimas as
present in other designs [1].

The lofted transition shows some increase in radial wavenumber
of the lowest order mode. In the non-optimized transition, this results
in high return loss values at the lower end of the frequency band.
The lofted transition shows a similar return loss pattern with varying
frequency and converter length to the optimized case. However, in
terms of bandwidth and return loss level the optimized CIS-based
converter still outperforms the lofted transition.
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4. CONCLUSIONS

In this paper, a frequency independent design technique for broadband
rectangular to circular waveguide transitions is presented. This design
approach is based on adjustment of the shape of the transition to
achieve constant impedance for the lowest-order waveguide mode.
Three-dimensional FEM computations confirm the effectiveness of the
design approach and the algorithmic implementation. An example case
shows that the return loss is in average 10 dB lower for a frequency
range of 6 GHz and converter length of 3 to 36 mm when compared to
a lofted conversion.
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