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COHERENT FIELD APPROXIMATION OF PLANE
WAVE SCATTERING FROM 1D-ROUGH MIRRORS

P. Hillion
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Abstract—For an harmonic plane wave impinging on a perfectly
reflecting smooth plane the total field, incident and reflected, satisfying
on this plane a Dirichlet or Neumann boundaray condition, has an
integral representation that we extend to the specular reflection from
a perfectly reflecting rough plane. To make this generalization possible,
some constraints must be imposed on the wavelength of the incident
field and on the rough amplitude to make the diffuse field negligible
so that only the coherent field is important and we may use the fact
that the coherent power is identical to that of a smooth surface. This
generalized integral representation supplies an approximation of the
coherent field valid far from the rough plane. We limit the discussion
to acoustic, TE, TM electromagnetic wave incident on 1D-perfectly
reflecting rough planes with roughness described by zig-zag functions
piecewise linear with opposite slop on adjacent intervals.

1. INTRODUCTION

Wave scattering from rough surfaces has been of interest in physics and
engineering for many years because of its large number of applications
in optics, acoustics, radiowave propagation and radar techniques.
Theoretical investigations in such domains involve a trade off between
rigorous mathematical and physical, analytical and computational
treatments. So, a variety of approximate and numerical methods are
employed to compute solutions of these scattering problems, discussed
at length in published works among which [1, 8] are some of the most
recent ones with an important bibliography in [1].

Now, the simplest and one of the most important boundary
value problem in acoustics and electromagnetism is the scattering of
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a uniform plane wave incident on a plane boundary S between two
different media, because its solutions can be used to analyze scattering
problems on solids large compared with wavelength. We are interested
here in scalar and TE, TM electromagnetic wave scattering from
1D-rough surfaces when the roughness amplitude is small enough to
make negligible the diffuse structured field so that we have to deal
with coherent reflection in the specular direction: a kind of situation
that would expect a far observer eager to optimize, by playing upon
wavelength and direction of observation, the signal-to-noise ratio in
the reception of the backward radiation coming from an illuminated
surface.

So, we first consider an harmonic plane wave impinging on a
perfectly reflecting 1D-smooth plane z = 0 and we prove that the
total field incident plus reflected satisfying a Dirichlet or Neumann
boundary condition on the smooth plane has an integral representation
generalizing the usual angular spectrum representation [2]. The same
problem is investigated when the smooth plane is changed into a rough
plane and we prove that the far total field in the specular direction
has also an integral representation when the roughness amplitude h
is small and when the wavelength λ of the incident field is such as
λ−1h ¿ 1 so that the diffracted field may be neglected. This integral
representation is a coherent field approximation which can be called
geometrical theory of rough reflection. Roughness is characterized by
a function generalizing the zig-zag function recently introduced by
Murakami [9] in a different context and which is a description well
suited to the integral representation approach.

This paper is organized as follows: Section 2 is devoted to
the integral representation of the total field for harmonic plane
waves impinging on perfectly reflecting, smooth 1D-planes and to its
extension to the total field in the specular direction for fields incident
on a rough plane. The constraints to impose on roughness amplitude
and wavelength to justify this approach are carefully discussed. We
give in Section 3 some generalizations of the Murakami zig-zag
functions to describe roughness and we analyse their properties useful
in the integral representation of the total field. We present in Section 4
an application to the total far field coming from the specular reflection
of harmonic plane waves on perfectly reflecting, weakly structured
Murakami 1D-planes. Conclusive comments are given in Section 5.

2. INTEGRAL REPRESENTATION APPROACH

Suppose that the harmonic plane wave ψi(x, z) = exp(ikxx + ikzz)
impinges on a perfectly reflecting smooth plane z = 0 on which the
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total field, incident and reflected

ψ(x, z) = ψi(x, z) + ψr(x, z) = exp(ikxx) sin(kzz) (1)

satisfies the Dirichlet boundary condition [ψ(x, z)]z=0 = 0. Then,
with a Green’s function g ful-filling the boundary condition
[g(x, z; x′, z′)]z=0 = 0 the total field has the integral representation

ψ(x, z) =

∞∫

−∞
dx′[g(x, z; x′, z′)∂z′ψ(x′, z′)]z′=0 (2)

in which [10]

g(x, z; x′, z′) = (1/4π)

∞∫

−∞
dβk−1

z exp(iβx− iβx′)

[exp(iκz|z − z′|)− exp(iκz|z† − z′|)] (2a)

where z† = −z belongs to the image point and κ2
z = k2 − β2 with

k2 = k2
x + k2

z .
The substitution of (2a) into (2) gives

ψ(x, z) =

∞∫

−∞
dβ exp(iβx)F (β),

F (β) = (1/4π)

∞∫

−∞
dx′ exp(−iβx′)[A(x′, z′)]z′=0

(3)

in which the kernel A(x′, z′) is

A(x′, z′) = κ−1
z ∂z′ψ(x′, z′)[exp(iκz|z − z′|)− exp(iκz|z† − z′|)] (4)

and since according to (1)

∂z′ψ(x′, z′) =kz exp(ikxx′) cos(kzz
′)

A(x′, z′) =kz/χz exp(ikxx′) cos(kzz
′)

[exp(iχz|z − z′|)− exp(iχz|z† − z′|)]
(4a)

Assuming the incident field in the half space z > 0 so that z† < 0 and
|z − z′|z′=0 = −|z† − z′|z′=0 = z, we get

[A(x′, z′)]z′=0 = 2kz/χz exp(ikxx′) sin(kzz),
F (β) = kz/χz sin(χzz)δ(kx − β)

(5)
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where δ is the Dirac distribution and since κ2
z = k2−β2 the form factor

F (β) reduces to
F (β) = sin(kzz)δ(kx − β) (5a)

and substituting (5a) into (3) gives the total field (1) justifying the
integral representation (2).

We now suppose that ψi(x, z) impinges on a weakly rough,
perfectly reflecting 1D-plane endowed with the roughness function ζ(x)
and we are interested in the total field φ(x, z) far from the rough plane
and in the direction of the specular reflection. We want also to get
φ(x, z) from an integral representation similar to (2). To reach this
result we impose the following constraints:

1. The mean roughness amplitude ζ̄ is zero making possible to use the
Green’s function (2a) with the image point z† taken with respect
to ζ̄. In addition, the mean square amplitude ζ̄2 is very small
justifying 0(ζ̄2) approximations in which 0 is the Landau symbol.

2. The wavelength λ of the incident field satisfies the inequality
λ−1h ¿ 1 in which h = max|z(x)| so that the diffuse field may be
neglected reducing scattering to reflection.

3. For an integral representation approach similar to (2) of the
specular reflection when the reflected harmonic plane wave is
exp(ikxx − ikzz), an approximation of the total field in the
integrand is given by the expression (1) of the total field for a
smooth plane, in agreement with the fact that the coherent power
is identical to that of a smooth surface [11]. Of course, φ(x, z) does
not satisfy the Dirichlet boundary condition on the rough surface
but this is not an obstacle to the use of the integral relation in the
far field.

Assuming these conditions fulfilled, the integral representation

φ(x, z) =

∞∫

−∞
dx′[g(x, z; x′, z′)∂z′ψ(x′, z′)]z′=z(x′) (6)

in which ψ, g are the expressions (1), (2a) gives a coherent field
approximation of the far total field in the specular reflection direction.
The integral (6) is similar to (2) except that the square bracket is
calculated on the rough surface z′ = ζ(x′) and no more on the smooth
plane z′ = 0.
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Then, taking into account (1) and (2a), we may write (6)

φ(x, z) =

∞∫

−∞
dβ exp(iβx)F1(β),

F1(β) = (1/4π)

∞∫

−∞
dx′ exp(−iβx′)[A(x′, z′)]z′=z(x′)

(7)

with A(x′, z′) given by (4a) and on the rough plane z′ = ζ(x′) we have
the 0(ζ̄2) approximation

[A(x′, z′)]z′=z(x′) = [A(x′, z′)]z′=0 + ζ(x′)[∂z′A(x′, z′)]z′=0 +0(ζ̄2) (8)

[A(x′, z′)]z′=0 is the expression (5) and using the relations ∂z′ |z −
z′|z′=0 = ∂z′ |z† − z′|z′=0 = 1, we get

[∂z′A(x′, z′)]z′=0 = −2 exp(ikxx′) sin(χzz) (8a)

so that taking into account (5) and (8a) the approximation (8) is now
with the 0-symbol deleted

[AS(x′, z′)]z′=z(x′) = 2kz/χz exp(ikxx′) sin(χzz)[1− χzζ(x′)] (9)

Substituting (9) into the expression (7), F1(β) becomes with F (β)
supplied by (5a)

Fs(β) = F (β)− (kz/2π) sin(χzz)γ(kx − β) (10)

γ(kx − β) =

∞∫

−∞
dx′ exp[i(kx − β)x′]ζ(x′) (10a)

Finally with (10) the integral representation (7) of φ(x, z) becomes to
the 0(ζ̄2) order

φ(x, z) = ψ(x, z)− (kz/2π)

∞∫

−∞
dβ sin(κzz) exp(iβx)γ(kx − β) (11)

in which ψ(x, z) is the field (1) and κ2
z = k2

x + k2
z − β2.

As previously said, this approximation of the total field in the
specular direction does not satisfy the Dirichlet boundary condition
[φ(x, z)]z′=z(x′) = 0 since to the 0(ζ̄2) order

[φ(x, z)]z′=z(x′) = [φ(x, z)]z′=0 + ζ(x)[∂zφ(x, z)]z′=0 + 0(ζ̄2) (12)

with according to (10)

[φ(x, z)]z=0 = 0, [∂φz(x, z)]z=0 = kz exp(ikxx) + 0(ζ̄) (12a)
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It is easy to transpose this integral representation to a total field
ψ◦(x, z) = exp(ikxx) cos(kzz) satisfying the Neumann boundary
condition [∂zψ

◦(x, z)]z=0 = 0 on the perfectly reflecting smooth plane
z = 0

ψ◦(x, z) = −
∫

dx′[ψ◦(x′, z′)∂z′g
◦(x, z; x′, z′)]z′=0 (13)

with the Green’s function [10]

g◦(x, z; x′, z′) = (1/4π)

∞∫

−∞
dβk−1

z exp(iβx− iβx′)

[exp(iχz|z − z′|) + exp(iχz|z† − z′|)] (13a)

so that

ψ◦(x, z) =

∞∫

−∞
dβ exp(iβx)F ◦(β), F ◦(β) = cos(χzz)δ(kx − β) (14)

And, provided that the previous three conditions are fulfilled, the
coherent field approximation of the total far field in the specular
direction is just obtained by changing sin(κzz) into cos(kzz) in (11)
and ψ into ψ◦:

ψ◦(x, z) = ψ◦(x, z)− (kz/2π)

∞∫

−∞
dβ cos(χzz) exp(iβx)γ(kx−β) (15)

In both cases, we need the characteristic function γ(kx − β) of the
roughness amplitude distribution.

3. GENERALIZED ZIG-ZAG FUNCTIONS

The zig-zag functions recently introduced by Murakami [9] to describe
fracture lines in stressed materials can be generalized to get

ζ(x) =
∞∑

n=−∞
Mn(x)Vn(x) (16)

Mn(x) = hna−1
n (−1)n[2x− (2n− 1)an],

Vn(x) = U [x− (n− 1)an]− U(x− nan)
(16a)

in which U is the unit step function U(x) = 1 for x ≥ 0 and U(x) = 0
for x < 0. The function (16) is linear inside any interval −an ≤ x ≤ an
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and takes its extremum values ±hn for |x| = |an| so that ζ̄ = 0 in
agreement with the first condition to be satisfied by roughness.

The zig-zag function (16) with a judicious choice of the an, hn

parameters supplies many different approximations for the description
of 1D-rough planes with in the more regular case hn = h, an = a. In
addition, to avoid mathematical difficulties attached to infinite series,
we may either assume that hn is strongly decreasing with increasing |n|
from some rank N or that hn is weighted with a convenient function
of n. These two possibilities are used here and we first consider the
zig-zag function

ζ(x) =
N∑

n=−N

Mn(x)Vn(x) (17)

Mn(x) = ha−1(−1)n[2x− (2n− 1)a],
Vn(x) = U [x− (n− 1)a]− U(x− na)

(17a)

To apply the integral representations (11), (15) to harmonic plane
wave scattering from the 1D-rough surface (17), we need as stated in
Section 2 the characteristic function γ(t) of the roughness amplitude
distribution

γ(t) =

∞∫

−∞
dx exp(itx)ζ(x) (18)

= ha−1
N∑

n=−N

(−1)n

na∫

(n−1)a

dx exp(itx)[2x− (2n− 1)a] (18a)

A simple calculation gives
na∫

(n−1)a

dx exp(itx)[2x− (2n− 1)a]

= 2t−2 exp(inat)[1− iat/2− (1 + iat/2) exp(−iat)] (19)

and substituting (19) into (18) we get

γ(t) = (2h/at2)b(t)
N∑

n=−N

(−1)n exp(inat),

b(t) = 1− iat/2− (1 + iat/2) exp(−iat)

(20)



184 Hillion

But the summation in (20) is easy to perform
N∑

n=−N

(−1)n exp(inat) =
N∑

n=0

εn cos(nat), ε0 = 1, εn = 2(−1)nn > 0

= (−1)N cos[(N + 1/2)at]/ cos(at/2) (20a)

and finally

γ(t) = (−1)N (4h/at2)b(t) cos[(N + 1/2)at)]/ cos(at/2) (21)

We now consider the second possibility mentioned earlier to deal with
infinite series

ζ∗(x) =
∞∑

n=−∞
M∗

n(x)Vn(x),

M∗
n(x) = h exp(−α2n2)a−1(−1)n[2x− (2n− 1)a]

(22)

in which the roughness amplitude h decreases with increasing |n| at a
rate fixed by the parameter α. The characteristic function becomes

γ∗(t) = (2h/at2)b(t)
∞∑

n=−∞
(−1)n exp(−α2n2) exp(inat)

= (2h/at2)b(t) exp[−(π + at)2/4α2]
∞∑

n=−∞
exp[−α2(n− µ)2],

µ = −ia−2(π + at) (23)

and, approximating the sum
∞∑

n=−∞
with the integral

∞∫
−∞

dn, we get

γ∗(t) = (2h/at2)b(t)π1/2α−1 exp[−(π + at)2/4α2)] (24)

We may now discard the constraint imposed on the infinite series to
get since b(−π/a) = 2

lim
Nfi∞

γ(t) = lim
afi0

γ∗(t) = (8h/π)δ(t + π/a) (25)

The zig-zag functions (17) and (22) may be termed regular since all the
intervals inside which the rough function is linear have the same length
2a and a modulated regular zig-zag function is obtained for instance
with an = a cos θn in (16). The most general situation is met when a
is a random variable with a distribution P (a) then, γ(t, a) becomes a
random function whose successive moments have to be obtained to get
the properties of the scattering kernel A(x′, z′).
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We could also consider zig-zag functions nonlinear inside the
intervals (−a, a) for instance with the functions Mn(x) in (17a)
changed into

Mn(x) = ha−2(−1)n[x2 − (2n + 1)ax + (n + n− 1)a2],
(n− 1)a ≤ x ≤ na (26)

This discussion shows the huge possibilities of zig-zag functions
to describe rough planes but, except for the regular ones, we
cannot expect to get analytical expressions of scattered acoustic and
electromagnetic fields from rough surfaces and an important numerical
work re-mains to be performed to implement efficient zig-zag functions.

Some similarity exists with the spline functions [12] used in
interpolation theory but with an important difference since these last
functions are continuously differentiable.

4. HARMONIC PLANE WAVE REFLECTION FROM 1D
ZIG-ZAG ROUGH PLANES

The approximation (11) of the integral representation approach to
harmonic plane wave reflection in the specular direction from 1D-rough
planes has to be used for soft acoustic fields and for the Ey component
of the TE electromagnetic field satisfying on the perfectly reflecting
plane the Dirichlet boundary condition. The approximation (15)
corresponds to hard acoustic fields, to the Hy component of the TM
electromagnetic wave and to the Neumann boundary condition.

We only consider the integral representation (11) that we write
with the variable p = kx − β

φ(x, z) = ψ(x, z) + ψ1(x, z),

ψ1(x, z) = −(kz/2π) exp(ikxx)

∞∫

−∞
dβ sin(χzz) exp(−ipx)γ(p)

(27)

in which χz = [k2
x + k2

z − (kx − p)2]1/2 and

γ(p) =

∞∫

−∞
dx′ exp(ipx′)ζ(x′) (27a)

For an 1D-rough plane described by the zig-zag function (17) we have
according to (21) and assuming N even

γ(p) = (4h/ap2)b(p) cos[(N + 1/2)ap]/ cos(ap/2) (28)
in which from (20)

b(p) = 2i exp(−iap/2)[sin(ap/2)− ap/2 cos(ap/2)] (28a)
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To perform the integration (27) is a difficult task because of the
branch points introduced by κz, and to avoid lenghty developments
of the Brillouin-Sommerfeld type [13], we impose further constraints
on roughness.

We first suppose that kx is not too far from its value β for a smooth
plane so that p/kz is small and χz has the 0(p2/k2

z) approximation:

χz = kz + kxp/kz + 0(p2/k2
z) (29)

We further assume a roughness function made of dense spikes with
short interval length 2a so that ap is small and a simple calculation
gives

b(p)/a2p2 = iap/12 + 0(a2p2)
cos[(N + 1/2)ap]/ cos(ap/2) = cos(Nap)− tan(ap/2) sin(Nap)

= 1 + 0(a2p2)
(30)

Substituting (30) into (28) we get

γ(p) = ia2hp/3 + 0(a2p2) (31)

and with (29) and (31) the expression (27) of y1 becomes

ψ1(x, z) =− (ia2kzh/6π) exp(ikxx)I(x, z) (32)

I(x, z) =

∞∫

−∞
pdp sin[(kz+pkx/kz)z] exp(−ipx)+0(a2p2, p2/k2

z) (32a)

and we get deleting the Landau symbol

I(x, z) = (1/2)∂x

∞∫

−∞
dp{exp(ikzz) exp[−ip(x− kxz/kz)]

− exp(−ikzz) exp[−ip(x + kxz/kz)]}
= π∂x[exp(ikzz)δ(x−kxz/kz)−exp(−ikz)δ(x+kxz/kz)]
= π[exp(ikzz)δ′(x−kxz/kz)−exp(−ikz)δ′(x+kxz/kz)] (33)

Substituting (33) into (32) gives since f(x)δ′(x) = −f ′(x)δ(x)

ψ1(x, z) = ia2kzkxh/6)[exp(ikxx + ikzz)δ(x− kxz/kz)
− exp(ikxx− ikzz)δ(x + kxz/kz)] (34)

This simple result is due to the drastic approximations (29), (30) and
specially (29). A better approximation of ψ1(x, z) could be obtained
with the saddle point method of integration [13, 14], at the expense of
more intricate calculations.
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5. CONCLUSIONS

The coherent field approximation of scattered harmonic plane waves
in the direction of specular reflection is, when the diffuse field is
negligible, a suitable tool for analyzing the back-ward radiation from
an illuminated surface in the perspective of a minimum signal-to-
noise ratio. This approach leads to tractable analytical expressions
with integrals of the Brillouin-Sommerfeld type [13] and some more
mathematical works are needed to get better approximations. The
recently developped nanocomposite materials [15] supplying rough
surfaces with small roughness amplitudes will make the coherent field
approximation particularly attractive.

The integral relation (2) may be generalized to the coherent
reflection of arbitrary harmonic plane waves incident on 2D-mirrors:
this generalization with no conceptual difficulties [10] requires double
instead of simple integrals to get the form factors F. The zig-zag ridge
line used to describe 1D-roughness can be interpreted as a grooved
surface for 2D-roughness.

An important generalization of the present approach concerns the
harmonic plane wave scattering from non-perfectly reflecting mirror on
which the total field ψ(x, z) satisfies a Robin boundary condition [16]

[∂zψ(x, z) + isψ(x, z)]z=0 = 0 (35)

where s is a simple constant or a function of position on the boundary.
Assuming s constant, the total field incident and specularly

reflected has the form

ψ(x, z) = exp(ikxx)[exp(ikzz) + R(s, kz) exp(−ikzz)] (36)

in which R is a reflection coefficient and substituting (36) into (35)
gives

R(s, kz) = (kz + s)(kz − s)−1 (37)

so that

ψ(x, z) = 2(kz − s)−1 exp(ikxx)[kz cos(kzz)− is sin(kzz)] (36a)

and the integral relation (2) becomes

ψ(x, z) =

∞∫

−∞
dx′[gs(x, z; x′, z′)∂z′y(x′, z′)]z′=0 (38)

gs(x, z; x′, z′) = [Γ(s)/4π]

∞∫

−∞
dβχ−1

z exp(iβx− iβx′)

[exp(iχz|z − z′|) + R(s, χz) exp(iχz|z† − z′|)] (38a)
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with a constant Γ(s) to be determined and R(s, χz) obtained from (37)
by changing kz into χz. We check easily that gs satisfies the Robin
boundary condition (35). Then, taking into account (38a) we may
write (38)

ψ(x, z) =

∞∫

−∞
dβ exp(iβx)Fs(β),

Fs(β) = [Γ(s)/4π]

∞∫

−∞
dx′ exp(−iβx′)[As(x′, z′)]z′=0

(39)

with

As(x′, z′) = χ−1
z ∂z′ψ(x′, z′)[exp(iχz|z − z′|)

+R(s, χz) exp(iχz|z† − z′|)] (40)

We get from (36a)

[∂z′ψ(x′, z′)]z′=0 = −2ikzs(kz − s)−1 exp(ikxx′) (41a)

while

[exp(iχz|z − z′|) + R(s, χz) exp(iχz|z† − z′|)]z′=0

= 2(χz − s)−1[χz cos(χzz)− is sin(χzz)] (41b)

and substituting (41a), (41b) into (40) we get

[As(x′, z′)]z′=0 = −4ikzs[κz(kz − s)(κz − s)]−1

exp(ikxx′)[κz cos(κzz)− is sin(κzz)] (42)

Taking into account (42) the form factor Fs(β) becomes according
to (39)

Fs(β) = −4iΓ(s)kzs[χz(kz − s)(χz − s)]−1

[χz cos(κzz)− is sin(χzz)]δ(kx − β)
= −2iΓ(s)s(kz−s)−2[kz cos(kzz)−is sin(kzz)]δ(kx−β)(43)

where we used the relation χ2
z = k2

x + k2
z − β2 and β = kx according to

the Dirac distribution then, substituting (43) into the expression (39)
of ψ(x, z) gives (36a) with Γ(s) = i(kz − s)s−1.

We observe at once that for s ⇒ ∞, (35) becomes the
Dirichlet boundary condition and the relations (39)–(43) reduce to
the expressions (2)–(5). For s = 0, (35) is the Neumann boundary
condition and making s = 0 in (39)–(43) gives the relations (13), (14).

The situation is not so simple when s is function of x and it is
better work with the transverse.
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Fourier transform of fields Ψ(ζ, z) =
∞∫
−∞

dx exp(iζx)ψ(x, z) so

that the boundary condition (35) becomes

[∂zΨ(ζ, z) + is(ζ)Ψ(ζ, z)]z=0 = 0 (44)

We shall investigate later the coherent field approximation for this
type of boundary condition and its extension to harmonic plane wave
scattering from non-perfectly reflecting rough mirrors.
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