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Abstract—A direct 61GHz demodulator, based on a rectangular
waveguide (WR-12) six-port, is presented in this letter. The six-port
device, composed of four 90◦ hybrid couplers fabricated in a metal
block of brass, is implemented in ADS software. Good agreement
between QPSK demodulation results using an ideal six-port model
and a second one, based on the S-parameter measurements of a 61GHz
hybrid coupler, is achieved.

1. INTRODUCTION

In 2001, the Federal Communications Commission (FCC), which stan-
dardizes and enforces spectrum usage, has allocated 7 GHz of unli-
censed bandwidth in the V-band for indoor wireless communications.
This bandwidth provides high data rate transmission. The propagation
of V-band indoor signals has the ability of decreasing the interference
to other collocated systems, and increasing the frequency reuse factors
and space efficiency [1]. Due to its high path loss, the V-band is an
attractive candidate for short-distance sensors and indoor communica-
tions based on Pico-cell zone [2, 3].

The six-port is a passive linear component, first developed in
the 1970s for accurate automated measurements of the complex
reflection coefficient in microwave network analysis [4]. Tatu et al.
presented in [5] a V-band six-port, based on four 90◦ hybrid couplers,
designed in MHMIC technology using a 9.9 relative permittivity
125µm substrate. Various millimeter-wave front-end architectures,
fabrication technologies, and modulation schemes were proposed in
recent years [6, 11].
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In this letter, the proposed six-port computer model is based
on the S-parameter measurement results of the 90◦ hybrid coupler
fabricated at 61 GHz, using the rectangular waveguide technology,
and on the block diagram presented in [5]. WR-12 is the
standardized rectangular waveguide, suitable for V-band and E-band.
In the following, the measurement results of the hybrid coupler
and the simulation results of the six-port device are presented. A
communication link has been simulated using a quadrature phase shift
keying (QPSK) modulated signal along with a six-port demodulator
model based on coupler measurement results.

2. RECTANGULAR WAVEGUIDE HYBRID COUPLER

The four-port hybrid coupler represents the core component of the six-
port circuit, dedicated to various millimeter-wave applications [12, 14].
A new 90◦ hybrid coupler is designed and fabricated at 61 GHz,
in a small metal block of brass, using WR-12 standard rectangular
waveguide technology. The commercial software High Frequency
Structure Simulator (HFSS) of Ansoft Corporation is used for the
coupler design. Figure 1 shows its layout and the energy balance
through its ports. All four ports allow access by standard WR-12
flanges to the measurement equipment. The S-parameters of the
WR-12 coupler are measured using the “Agilent Network Analyzer
E8362B”. Figure 2 shows the phase of the transmission scattering
parameters (S12 and S13). The phase difference obtained at 61 GHz is

Figure 1. Layout (energy balance) of the 90◦ hybrid coupler.
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a multiple of 90◦. In addition, the transmissions S-parameter phase is
unbalanced by about 10◦ over a frequency band of 3 GHz (60–63 GHz).
Due to the symmetry of the circuit, equal measured isolations between
ports 1–4 and 2–3 of −18 dB are obtained, as shown in Figure 3. The
measured power split and return loss versus frequency are −3.8 dB and
−15 dB, respectively, at the operating frequency of 61GHz.
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Figure 2. Measured coupler transmission S-parameter phases (S12

and S13).
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Figure 3. Measured coupler isolation ports, S14 and S23.
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3. SIX-PORT DEVICE

The six-port computer model is generated in Advanced Design System
(ADS) using the coupler measured results. Isolation of−23 dB between
the two input ports and return loss of −15 dB in a 250 MHz bandwidth
around 61GHz, as well as −7.4 dB for the transmission between input
and output ports, are obtained.

A harmonic balance simulation using this six-port model is
performed. The phase between RF and LO signals is swept in a
360◦ range and the RF power is set to −25 dBm. The RF six-port
output voltage magnitude (V1 to V4) variations versus this phase shift
are shown in Figure 4. As seen, due to the 90◦ hybrid couplers, the
minimal magnitude values are shifted by 90◦ multiples, suitable for a
high-quality I/Q mixer. Periodical maximal and minimal values are
obtained for each output voltage. Theoretically, the minimal value
is zero. However, in practice, due to inherent errors of fabrication
process, this is a nonzero value and the phase shift between V4 and V1

minimal value is 75◦, which is considered a tolerable error for QPSK
demodulation purpose. Moreover, due to the differential approach
proposed in [5] and showed in Figure 5, these errors will be reduced.
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Figure 4. Simulation results of Vout magnitude versus RF input
phases shift.
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4. QPSK DEMODULATION

In order to obtain a QPSK signal, the LO phase has been swept through
four possible states (45◦, 135◦, 225◦ and 315◦). Figure 5 shows the
block diagram of this simulation [5]. The demodulated I/Q signals are
acquired by analog signal processing, using some baseband circuits.
The RF and LO power are set to −20 dBm and −25 dBm, respectively,
while the operating frequency is fixed at 61 GHz.

Ideally, the QPSK constellation points are usually located around
a circle, at a uniform angular difference of 90◦. Figure 6 shows
the constellation diagrams (I/Q) of the QPSK demodulator. The
simulations are performed by means of two six-port models: an ideal
one and a model based on hybrid coupler measurements. It can be
seen that for the second six-port model, these points are somehow not
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Figure 5. ADS QPSK demodulator block diagram.
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Figure 6. Demodulated QPSK signals.
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positioned squarely as supposed, due to the hybrid coupler fabrication
errors (see Figure 4), but nearly equivalent to the ideal ones. Despite an
error around 15◦ compared to ideal points, due to fabrication process,
the waveguide six-port demodulates QPSK signals with good results.

5. CONCLUSION

In this paper, WR-12 90◦ hybrid coupler measurements and QPSK
six-port demodulator results at 61GHz are presented. In spite of
some errors due to the design and the fabrication process, good S-
parameters are obtained for both, the coupler and the six-port circuit.
The demodulation results of V-band QPSK signals using this WR-12
six-port demodulator validates the design of compact, low-cost, and
high-speed future wireless millimeter-wave communications systems.
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