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Abstract—A uniform asymptotic expression is developed for
calculating the fields scattered by a perfect electrically conducting
plate illuminated by a vectorial gaussian beam. This expression
has been obtained under the physical optics approximation using the
saddle point method. Some numerical applications are presented
and compared with some reference methods such as a MoM. A brief
parameter study of this solution is presented.

1. INTRODUCTION

Uniform asymptotic expression is developed in this paper for
calculating the fields scattered by a Perfect Electrically Conducting
(PEC) plate illuminated by a Gaussian Beam (GB). This expression
has been obtained under the Physical Optics approximation (PO). This
work is part of a general Gaussian Beams tracking method which is
used for calculate interactions of electromagnetic waves with complex
3D objects.

Ray tracing and ray techniques have been widely used in
electromagnetics engineering for scattering problems. However, some
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difficulties may arise with some complex situations, such as caustics.
Moreover, the number of rays and the computation time may increase
for huge complex cases.

In order to avoid these problems, some recent approaches use
different basis functions involving Gaussian Beams for tracking fields in
complex environments [1–4]. In comparison to classical ray techniques,
the GB set enables one to avoid caustic problems and reduces the
number of launched elements. Moreover, asymptotic methods allow
to express propagation and transformation of the GBs by interfaces
in closed form expressions. Gaussian Beams Tracking (GBT) methods
are based on the ability to expand a source field known on a surface
into a summation of Gaussian beams [5, 6]. During the last years, GBT
has been successfully applied to the computation of the fields scattered
by mono and multilayer dielectric radomes [7–11] or other complex 3D
objects [12, 13].

In a general GBT problem, some GB may impact a finite surface.
In this case, one must take into account the diffraction effects due to the
edges. In this paper, we develop an analytical expression to evaluate
the first order diffraction effects as previously done for reflectors by [1].
Evaluating the PO integral consists in the derivation of a double
integral over the illuminated surface of an object. Reduction of surface
integrals to contour integrals has been proposed in order to reduce
computation time [14]. However, due to its relative complexity, this
method is restricted to simple illuminations such as plane or spherical
waves. More recently, this approach has been used with a vector
complex source point which is a generalisation of a classical source
point to complex space coordinates. The paraxial approximation
corresponds to the fields of a Gaussian Beam [15]. However, the
resulting line integral has to be numerically evaluated.

When the integration domain has some rotational symmetry
properties and using appropriate changes of integration variables, one
can derive an analytic result with the use of classical asymptotic
expansions for single integral [1, 16, 17]. In the present situation of
a rectangular surface, this approach can not be directly used.

In the present paper, we extend the stationary phase method for a
double integral as presented in [18] for a spherical wave illumination to
the case of an incident vector paraxial gaussian beam. The stationary
phase method is an asymptotic approximation which may stand for
high frequency double bounded oscillating integrals [19, 20]. In this
approach, the principal contributions to the double integral come from
points called critical points. Their locations depend on the incident
field and on the observation points. These points may be located inside,
outside or on the boundaries of the integration surface. However, some
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authors have advised about the difficulty of finding uniform asymptotic
evaluation [21]. One has often to switch between non-uniform and
uniform expressions as the critical points get coupled [18], inducing
some discontinuities.

Moreover, in the case of GB illumination, these stationary points
are complex. The stationary phase method is physically meaningful
when the critical points are reals. Physical interpretation of complex
critical points is not easy unless one uses the saddle point method.
Unfortunately, the saddle point method is more difficult to apply
rigorously to multidimensional bounded integral than the stationary
phase method [22]. So, in order to derive an analytical expression of
the PO integral with the saddle point method, we proceed by splitting
the integration domain. This zoning permits one to deal only with
canonical integrals, for which uniform asymptotic expansions exist [23–
25].

The paper is organized as follows: In Section 2 the incident
and scattered fields by GB are expressed under a canonical form, in
Section 3 the mathematical derivation of the uniform expansion is
described. Section 4 presents numerical results. Appendix reports
some mathematical derivations. An exp[+jωt] time dependance
convention is assumed and suppressed throughout this paper.

2. PO INTEGRAL

The general geometry of the problem is illustrated on Fig. 1.
r(x, y, z) is the location of a point in a cartesian coordinate system

Figure 1. General configuration.
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(O, êx, êy, êz), where êz is normal to a PEC plate. We denote by
(OGB, êGB;‖, êGB;⊥, êGB;z) the local coordinate system of an incident
gaussian beam (GB) which is illuminating the plate. The superscript
notation r(GB)

(
x(GB), y(GB), z(GB)

)
expresses r into the local scheme

of the incident GB. To simplify the derivation without loosing the
generality, the origin O is also located at the intersection of the
direction êGB;z with the plane (êx, êy). The incident electric and
magnetic fields on P are expressed by:

Ei(r) = AE(r)u(r) (1)

Hi(r) =
1
Z0

AH(r)u(r) (2)

with

u(r) =

(
det Q

(
z(GB)

)
det Q(0)

) 1
2

· exp
[
−jk

2

(
x(GB)

y(GB)

)
Q
(
z(GB)

)(
x(GB)

y(GB)

)
− jkz(GB)

]
(3)

where the superscript t denotes the transpose of a vector. k is the
wave-number and Z0 the free space wave impedance. Q is the complex
curvature matrix of the incident beam, which elements qij are defined
with a negative imaginary part [26, 27]. AE and AH vectors denote
electric and magnetic fields amplitude. They are expressed by [7]:

AE(r) = a‖êGB;‖ + a⊥êGB;⊥ + aE;z(r)êGB;z (4)
AH(r) = −a⊥êGB;‖ + a‖êGB;⊥ + aH;z(r)êGB;z (5)

where

aE;z(r) = −a‖
(
q11x

GB + q12y
GB
)− a⊥

(
q12x

GB + q22y
GB
)

(6)

aH;z(r) = a‖
(
q12x

GB + q22y
GB
)− a⊥

(
q11x

GB + q12y
GB
)

(7)

Coefficients a‖ and a⊥ are the eigenvalues of the Gaussian beams
expansion [5, 9].

The scattered electric field is calculated using the Kottler current
integral formulation at large distance [28]:

Es(r) =
jkZ0

4π
√

εr

∫∫
S
R̂ × R̂ × Ĵ(r′)

e−jkR

R
dx′dy′ (8)

where S denotes the surface of the plate, r′(x′, y′, z′ = 0) represents
the coordinates of any point on S. As usual, R denotes the distance
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between the observation point r and the point r′ on the integration
domain. R corresponds to the vector r − r′ and R̂ is the unit vector
defined by R/R. The electric current J(r′) is given within the PO
approximation by

J(r′) ≈ 2êz × Hi(r′) (9)
The transformation between the local coordinates associated to the
incident GB and the absolute coordinates is:

r(GB) = [mij ](r − OGB) (10)

where the transformation matrix [mij] is known. Using this relation,
one can express the incident magnetic field Hi(r′) in (9) into the
absolute coordinates. The distance R can be expanded in a Taylor
series about the GB reflection point O in order to obtain a quadratic
expression:

R ≈ r −
t(x′

y′

)(
x/r

y/r

)
+

1
2

t(x′

y′

)
P

(
x′

y′

)
(11)

where

P =

(
1
r − x2

r3 −xy
r3

−xy
r3

1
r − y2

r3

)
(12)

Moreover, we assume that the value of the curvature matrix on the
surface S is Q

(
O(GB)

)
. Using these assumptions, one can transform

the integral (8) to the canonical form:

EPO
s (r) =

∫∫
S
f(x′, y′)e−kg(x′, y′)dx′dy′ (13)

where

f(x′, y′) =
jk

2π

(
det Q(x′, y′)

det Q(0)

) 1
2

R̂×R̂×n̂×[t[mij ]AH(x′, y′)
]

(14)

g(x′, y′) =
j

2

t(x′

y′

)[
P + t[mij ]Q(O(GB))[mij ]

](x′

y′

)
(15)

−j
t(x′

y′

)
b + jc

The coefficients b and c are defined by

b =
(

x/r
y/r

)
−
(

m31

m32

)
− t[mij]Q

(
O(GB)

)(
α1

α2

)
(16)

c = r + α3 +
1
2

t
(

α1

α2

)
Q

(
O(GB)

)(
α1

α2

)
(17)
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with (
α1

α2

α3

)
= −[mij ]

(
xOGB

yOGB

zOGB

)
(18)

The PO canonical integral (13) will next be evaluated
asymptotically for large k in next section.

3. UNIFORM ASYMPTOTIC EXPANSION

In this section, we use a uniform asymptotic expansion to derive an
analytical expression of the integral (13).

The integration domain S corresponds to a rectangular patch. In
order to get well known double canonical integrals, we rewrite the
integration domain S as the difference between the whole plane and
the complementary domain S̄, as illustrated on Fig. 2. So, (13) is
expressed as ∫∫

S
(. . .) =

∫∫
R2

(. . .) −
∫∫

S̄
(. . .) (19)

The evaluation of an asymptotic expansion on
∫∫

R2 is well known,
specially when the phase term g(x′, y′) is a quadratic function, for
which there is only one saddle point. One gets [24]:∫∫

R2

f(x′, y′)e−kg(x′,y′)dx′dy′

≈ 2π
k

(
− det(P + t[mij ]Q

(
O(GB)

)
[mij ]

)− 1
2 fse−kgs (20)

with

fs = f(x′
s, y′s) (21)

gs = g(x′
s, y′s) (22)

Figure 2. Decomposition of the initial integration domain.
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Figure 3. Decomposition of the complementary domain S̄ into 8
canonical sub-domains.

where (x′
s, y′s) is the saddle point defined by ∇g(x′

s, y′s) = 0, then:(
x′

s
y′s

)
=
(
P + t[mij ]Q

(
O(GB)

)
[mij ]

)−1
b (23)

To treat the second double integral over S̄, we express S̄ as a sum
of canonical domains, as illustrated on Fig. 3. So,

∫∫
S̄ is expressed as:∫∫

S̄
= IX− + IX+ + IY− + IY+

−IX−Y− − IX−Y+ − IX+Y− − IX+Y+

≡
∫ +∞

−∞

∫ X−

−∞
+
∫ +∞

−∞

∫ +∞

X+

+
∫ Y−

−∞

∫ +∞

−∞
+
∫ +∞

Y+

∫ +∞

−∞

−
∫ Y−

−∞

∫ X−

−∞
−
∫ +∞

Y+

∫ X−

−∞
−
∫ Y−

−∞

∫ +∞

X+

−
∫ +∞

Y+

∫ +∞

X+

(24)

The uniform asymptotic expansion of the first four double integrals
is well-known and details of the derivation can be found in [29, §2.3]
or [24, §4]. The uniform asymptotic expansion of double integral of
type:

IX =
∫ +∞

−∞

∫ +∞

X
f(x′, y′)e−kg(x′, y′)dx′dy′ (25)

is stated from Ref. [29]. It consists into a double asymptotic expansion,
first applied to the integral

∫ +∞
−∞ then to the integral

∫ +∞
X :

IX ≈e−kg(x′
X ,y′

X)

[
FX(0)√

k
Q
(√

ksX

)
+

1
2k

FX(sX)−FX(0)
sX

e−ks2
X

]
(26)
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with
∂g

∂y′
(y′X) = 0 ∀x′ ∈ [X,+∞] (27)

sX =
√

g(X, y′X ) − g(xs, y′X) (28)

∂g(x′, y′X)
∂x′ (x′

X) = 0 (29)

FX(sX) = Φ(X)
sX

∂g(x′,y′
X)

∂x′ (X)
(30)

FX(0) = Φ(x′
X)

√
2

∂2g(x′,y′
X)

∂2x′ (x′
X)

(31)

Φ(x) =

√
2π
k

(
∂2g

∂y′2
(x′, y′X)

)− 1
2

f(x′, y′X) (32)

Q(t) =
∫ ∞

t
e−s2

ds =
√

π

2
erfc(t) (33)

Since g (15) is an analytical function, its derivatives can be analytically
expressed. They are expressed in closed-form in the previous equations
only for the reader’s convenience.

One can obtain similar results for IX− , IY− and IY+ . Four integrals
are still remaining. These last integrals have two boundaries, one on
each single integral. For the sake of clarity, we proceed in the appendix
to the derivation of double integral of type:

IXY =
∫ ∞

Y

∫ ∞

X
f(x′, y′)e−kg(x′, y′)dx′dy′ (34)

Finally, one obtains asymptotic approximation [18].

IXY ≈ f(X,Y )
π

(
∂2g

∂x2
(X,Y )

∂2g

∂y2
(X,Y )

)− 1
2

·e−kg(X,Y )Q
(√

ksx

)
eks2

XQ
(√

ksy

)
eks2

Y (35)

with

sX =
∂g

∂x′ (X,Y )

(
1

2 ∂2g
∂x′2

) 1
2

(36)

sY =
∂g

∂y′
(X,Y )

⎛
⎝ 1

2 ∂2g
∂y′2

⎞
⎠

1
2

(37)
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One can obtain similar results for IX−Y− , IX−Y+ and IX+Y− .
The final asymptotic solution is the sum of the uniform asymptotic

expansions, and remains uniform. One does not have to select between
different critical point expressions, and then this formulation does not
suffer from discontinuities as it may occur when critical points get
coupled.

4. NUMERICAL RESULTS

In this section, we compare the scattered field obtained by a numerical
evaluation of the PO integral (8), by a MoM method and by our
analytic expression. The MoM code is the ONERA ELSEM3D. All the
simulations have been performed on a classical personal computer at
3.4 GHz clock. On Fig. 4, an incident TM gaussian beam illuminates a
15λ×15λ square plate. The beam incidence angles are θi = 55◦, φi = 0◦
and the distance OOGB is 30λ. This incident beam has been choosen
rotationaly symetric, with a waist W0, by using a diagonal curvature
matrix defined by q11 = q22 = 2/(jkW 2

0 ) with kW0 = 2π. The Eθ

component of the electric field is observed for θ ∈ [−90◦, 90◦], φ = 0◦,
at r = 1000λ from the plate.

Asymptotic PO (continuous line) and numerical PO (dash-dotted

Figure 4. Eθ component at r = 1000λ for θ ∈ [−90◦, 90◦], φ =
0◦, kW0 = 2π.
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Figure 5. Eφ component at r = 1000λ for θ ∈ [−90◦, 90◦], φ =
112◦, kW0 = 2π.

line) curves are very close. In comparison with the MoM reference
curve (dashed line), the PO solutions give correct results only for the
first main lobes. While the numerical PO integration and the MoM
took respectively 17 s and 21 min to be computed, the asymptotic
evaluation was obtained in 0.2 s.

We present on Fig. 5 the scattered electric field in a more general
case. The beam incidence angles are θi = 45◦, φi = 0◦ and its local
origin OGB is (50λ, 0, 50λ). The size of the plate is 20λ × 20λ. The
observation of the co-polar component Eφ is made for θ ∈ [−90◦, 90◦]
with φ = 112◦ at 1000λ from the plate.

As in the previous case, the analytic PO formulation is still very
close to the numerical PO integration. Of course, PO evaluations don’t
match exactly the MoM result, except for the main lobes.

5. LIMITATIONS OF THE SOLUTION

The derivation of the PO asymptotic solution is mainly based on three
hypothesis: A large distance approximation, a constant variation of
the curvature matrix on the illuminated surface and the neglected anti
diagonal terms in the Hessian matrix of the phase expression in some
integrals. This three points are discussed below.

A parameter study of the presented solution in comparison to
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Figure 6. Error Δ (Eq. (38)) between PO numerical integration and
PO asymptotic expansion for different beam incident angles θi with a
15λ × 15λ plate. ‖OOGB‖ = 30λ.

a numerical PO integral evaluation shows that, as predicted, the
observation distance must be at large distance from the illuminated
surface. Typically, this distance must be greater than 70λ, in order
to get a maximum error Δ inferior to −70 dB in normal incidence
(θi = 0◦), where Δ is defined by:

Δ =

∑∥∥∥EPO;num
s − EPO;ana

s

∥∥∥2

∑∥∥∥EPO;num
s

∥∥∥2 (38)

Due to the approximation made on the curvature matrix on the
illuminated surface, the analytical expression of the incident field on
the integration domain does not exactly corresponds to the exact
incident field of a GB. Consequently, the error between numerical and
analytic PO as shown on Fig. 6, will increase as the incident field on
the surface is rapidly varying. In particular, this is the case when the
incident angle of the beam is strong (θi > 70◦).

However, this limitation has to be considered in relation to the PO
approximation. Indeed, we have performed an other parameter study
between PO and MoM. As expected, the PO approximation is only
valid for the first main lobes of the scattered fields, but also when the
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incident angle of the beam is smaller to θi < 70◦. In case of grazing
incidence, PO approximation doesn’t give anymore the same result for
the first main lobes than the one obtained with MoM.

At last, the approximation made into the derivation of integrals
of type

∫∞
Y

∫∞
X are critical when the total scattered field depends

mainly on their contributions. This is the case when the incident field
illuminate the plate in the directions which are outside the corners,
corresponding to the fourth corner surfaces IXY on Fig. 3. In this
case, one can find that the scattered field is low, typically smaller
than −90 dB. In a launching and bouncing algorithm, this kind of
contribution may be whether neglected or occulted by some specular
or more energizing fields coming from other scatterers.

Finally, in case of an incident field on the plate which does not
come from a unique or multiple GB, by example a more complicated
field radiated by an antenna, one can expand this incident field as a
sum of GB. In this case, each of the GB is very localized on surface
and then the asymptotic evaluation gives correct results [13].

6. CONCLUSION

In this paper, we have developed a new uniform analytic formulation
in order to evaluate PO fields scattered by a PEC plate illuminated by
a vector gaussian beam. Numerical results show that this formulation
generally matches a PO numerical integration. This expression can
be used in a gaussian beam tracking algorithm, in order to take into
account of a first approximation of the diffraction effect by perfect
conducting edges.

APPENDIX A. DOUBLE INTEGRAL WITH TWO
BOUNDARIES

In this appendix, we derive an asymptotic approximation of a canonical
integral IXY :

IXY =
∫ ∞

Y

∫ ∞

X
f(x, y)e−kg(x,y)dxdy (A1)

where f(x, y) is considered as a slow varying function in comparison
to the exp term, k a large parameter and g(x, y) a quadratic function:

g(x, y) =
1
2
(
a11x

2 + 2a12xy + a22y
2
)− bxx − byy (A2)

The elements aij and the parameters (bx, by) are complex constants,
such as the real part of g(x, y) is positive as |x|, |y| → ∞, in order
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to ensure the convergence of IXY . It is well known from linear
algebra theory that it exists a change of variables which permits
one to express g(x(u, v), y(u, v)) as a separated functions of (u, v),
i.e., exp(g(x, y)) = exp(gu(u)) exp(gv(v)). However, this change of
variables makes difficult an asymptotic expansion of the resulting
integral, because one has to deal with a non trivial integral, which
integrand contains an error function. So, in order to get a close form
expression, a first order approximation may consist in neglecting the
a12xy term in g(x, y) [18]. By this way, I can be asymptotically
approximate as:

IXY ≈ f(X,Y )
∫ ∞

X
e−kg(x)(x)dx

∫ ∞

Y
e−kg(y)(y)dy (A3)

An asymptotic expansion of these two integral is well known and one
obtains expression (35).
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