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Abstract—This paper presents some improved three-dimensional
expressions of the magnetic field created by tile permanent magnets
uniformly and radially magnetized for the design of ironless
loudspeaker structures. All the expressions determined have been
reduced to compact forms. We use these expressions for the
optimization of ironless loudspeaker structures in which the radial
field must be radially uniform. Indeed, as ring permanent magnets
radially magnetized are rather difficult to manufacture, these magnets
are replaced by assemblies of tile permanent magnets radially
and uniformly magnetized. We present an example of ironless
loudspeaker structure that has been optimized with our three-
dimensional approaches.

1. INTRODUCTION

Tile permanent magnets can be used for manufacturing ring permanent
magnets radially magnetized by stacking them together. Such a way
of manufacturing a ring is commonly realized because ring permanent
magnets radially magnetized are difficult to fabricate. Consequently,
this alternative method consists in using tile permanent magnets
uniformly magnetized. However, they do not exhibit the same
properties as tiles radially magnetized and can lower the quality of
the radial field created by the permanent magnet structure.

Many authors have studied the field created by ring [1–
7], cylinder [8–10], tile permanent magnets [11–13] or by disk
conductors [14–16]. All these analytical methods have enabled authors
to study the stiffness or the force between permanent magnets for
magnetic bearings [17, 18] or couplings [19–22]. More generally,
optimizations can be carried out with analytical or semi-analytical
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approaches [23–25]. An application of the analytical calculation of
the magnetic field produced by permanent magnets is the design of
ironless loudspeakers [26–28].

This paper presents improved three-dimensional expressions of
the magnetic field created by tile permanent magnets uniformly
magnetized. The analytical expressions we present are not only more
compact but also simpler to use than the ones determined in [13].
Indeed, the contribution of the magnetic pole surface densities located
on the straight faces of the tile permanent magnet can be described
in a simpler expression than the one determined in [13]. Even though
the two problems are different between this paper and [13], the form of
the analytical expressions that must be determined analytically is the
same. Then, these expressions are used in order to design an ironless
loudspeaker structure.

The first section presents the way of obtaining these analytical
expressions by using the Coulombian model. Then, this paper discusses
the wave rate of the radial field created by a stacked structure of
tile permanent magnets uniformly magnetized. A prototype has been
built to show the suitability of such an analytical three-dimensional
approach. All the expressions obtained in this paper are available
online [29].

2. MODELLING TILE PERMANENT MAGNETS WITH
THE COULOMBIAN MODEL

This section presents the geometry studied and the model used
for modelling the magnetic field created by tile permanent magnets
uniformly magnetized. We explain how to find the surface densities
located on the faces of a tile permanent magnet uniformly magnetized.
The magnetic polarization of the tile permanent magnet studied is
J = 1T for the rest of this paper.

2.1. Modelling the Tile Permanent Magnet Using the
Coulombian Approach

The geometry considered and the related parameters are shown in
Fig. 1. The Coulombian model asserts that a permanent magnet whose
polarization is �J can be represented by using fictitious magnetic charges
which are located inside the magnet and on its faces. Thus, there
are both a magnetic pole volume density σ∗

v inside the magnet and a
magnetic pole surface density σ∗

s located on its faces. These magnetic
pole densities can be determined by using the following expressions:

σ∗
v = −�∇ · �J (1)
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Figure 1. Representation of the configuration considered. The ring
inner radius is r1; the ring outer one is r2; its height is z2 − z1; its
angular width is θ2 − θ1.

Figure 2. Definition of the unit normal vectors of the tile permanent
magnet.

and
σ∗

s = �J · �n (2)

Let us now apply (1) and (2) to our geometry shown in Fig. 1. For
this purpose, let us consider the geometry shown in Fig. 2 where we
have defined the four unit normal vectors in the plane �ux, �uy.

The magnetic polarization vector �J is expressed as follows:

�J = −Jx�ux − Jy�uy (3)
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where Jx = J cos
(

θ2+θ1
2

)
and Jy = J sin

(
θ2+θ1

2

)
. By using (1) with

(3), we deduct that:
σ∗

v = 0 (4)

This is a well-known result: a permanent magnet whose magnetic
polarisation is uniform does not have any magnetic pole volume
densities.

By applying (2) to �n1, �n2, �n3 and �n4 (see Fig. 2), we find:

�J · �n1 = (−Jx�ux − Jy�uy) · (− cos(θ)�ux − sin(θ)�uy)

= +J cos
(

θ − θ1 + θ2

2

)
�J · �n2 = (−Jx�ux − Jy�uy) · (− sin(θ2)�ux + cos(θ2)�uy)

= +J sin
(

θ2 − θ1

2

)
�J · �n3 = (−Jx�ux − Jy�uy) · (+ cos(θ)�ux + sin(θ)�uy)

= −J cos
(

θ − θ1 + θ2

2

)
�J · �n4 = (−Jx�ux − Jy�uy) · (+ sin(θ1)�ux − cos(θ1)�uy)

= +J sin
(

θ2 − θ1

2

)

(5)

Consequently, the tile permanent magnet is represented by four
charged planes.

3. THREE-DIMENSIONAL EXPRESSIONS OF THE
MAGNETIC FIELD COMPONENTS CREATED BY A
TILE PERMANENT MAGNET UNIFORMLY
MAGNETIZED

3.1. Magnetic Field Created by a Tile Permanent Magnet
Uniformly Magnetized

The magnetic field created by one tile permanent magnet uniformly
magnetized is expressed as follows:

�H(r, θ, z) =
J

4πμ0

∫ θ2

θ1

∫ z2

z1

cos
(

θ̃ − θ1 + θ2

2

)
u(�̃θ)∣∣∣u(�̃θ)

∣∣∣3 r1dθ̃dz̃



Progress In Electromagnetics Research, PIER 91, 2009 57

− J

4πμ0

∫ θ2

θ1

∫ z2

z1

cos
(

θ̃ − θ1 + θ2

2

)
u(�̃θ)∣∣∣u(�̃θ)

∣∣∣3 r2dθ̃dz̃

+
J

4πμ0

∫ r2

r1

∫ z2

z1

sin
(

θ2 − θ1

2

) �u(θ2)∣∣∣ �u(θ2)
∣∣∣3 dr̃dz̃

+
J

4πμ0

∫ r2

r1

∫ z2

z1

sin
(

θ2 − θ1

2

) �u(θ1)∣∣∣ �u(θ1)
∣∣∣3 dr̃dz̃ (6)

where μ0 is the permeability of the vacuum, J is the magnetic
polarization of the tile permanent magnet and �u is expressed as follows:

�u(θi) = (r − rj cos(θ − θi)�ux − rj sin(θ − θi)�uy + (z − z̃)�uz (7)

where j = r1 when dS = r1dθ̃dz̃ (the inner surface) or j = r2

when dS = r2dθ̃dz̃ (the outer surface). The integration of (6)
leads to the magnetic field components along the three defined axes:
Hr(r, θ, z), Hθ(r, θ, z) and Hz(r, θ, z) (expressed in A/m) which are
given by (11), (14) and (17). We use the relations xk = cos(θ − θk),
x2k = cos(2(θ−θk)), yk = sin(θk−θ) and tk = cot(θ−θk). In addition,
we define ξi,j, ηi,k and αi,j,k as follows:

ξi,j =
√

r2 + r2
i + (z − zj)2 − 2rri cos(θ − θ̃) (8)

ηi,k =
√

2r2
i − 4rrixk + r2(1 + x2k) (9)

αi,j,k =
√

r2 + r2
i − 2rrixk + (z − zj)2 (10)

3.2. Radial Component Hr(r, θ, z)

The radial component Hr(r, θ, z) of the magnetic field created by
one tile permanent magnet uniformly magnetized can be expressed
as follows:

Hr(r, θ, z) =
J

4πμ0

2∑
i=1

2∑
j=1

(−1)(i+j)℘(1,r)(i, j)

+
J

4πμ0

2∑
i=1

2∑
j=1

2∑
k=1

(−1)(i+j)℘(2,r)(i, j, k) (11)
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with

℘(1, r)(i, j)=
∫ θ2

θ1

ri(zj − z)
(
−r + ri cos

(
θ − θ̃

))
cos
(

θ1+θ2−2θ̃
2

)
(
r2 + r2

i − 2rri cos
(
θ − θ̃

))
ξi,j

dθ̃

(12)

℘(2, r)(i, j, k) =−r
(
rxk(x2k−1)+2riy

2
k

)
√−r2(−1 + x2k)ηi,k

arctan

[
(z−zj)ηi,k√−r2(x2k−1)αi,j,k

]

−xk log[z−zj +αi, j, k] (13)

3.3. Azimuthal Component Hθ(r, θ, z)

The azimuthal component Hθ(r, θ, z) of the magnetic field created by
one tile permanent magnet uniformly magnetized can be expressed as
follows:

Hθ(r, θ, z) =
J

4πμ0

2∑
i=1

2∑
j=1

(−1)(i+j)℘(1, θ)(i, j)

+
J

4πμ0

2∑
i=1

2∑
j=1

2∑
k=1

(−1)(i+j)℘(2, θ)(i, j, k) (14)

with

℘(1, θ)(i, j) =
∫ θ2

θ1

r2
i (z − zj) sin

(
θ − θ̃

)
cos
(

θ1+θ2−2θ̃
2

)
ξi,j

(
r2 + r2

i − 2rri cos
(
θ − θ̃

)) dθ̃ (15)

and

℘(2, θ)(i, j, k) =
z − zj

αi, j, k
yk sin

(
θ2 − θ1

2

)

−riyktk
αi, j, k

sin
(

θ2 − θ1

2

)
arctan

[
z − zj

ryk

]

+
rykxktk
αi, j, k

sin
(

θ2 − θ1

2

)
arctan

[
z − zj

ryk

]
(16)

3.4. Axial Component Hz(r, θ, z)

The axial component Hz(r, θ, z) of the magnetic field created by one tile
permanent magnet uniformly magnetized can be expressed as follows:
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Hz(r, θ, z) =
J

4πμ0

2∑
i=1

2∑
j=1

(−1)(i+j)℘(1,z)(i, j)

+
J

4πμ0

2∑
i=1

2∑
j=1

2∑
k=1

(−1)(i+j)℘(2, z)(i, j, k) (17)

with

℘(1, z)(i, j) =
∫ θ2

θ1

−ri

ξi,j
cos

(
θ1 + θ2 − 2θ̃

2

)
dθ̃ (18)

and

℘(2, z)(i, j, k) = sin
(

θ2 − θ1

2

)
log [ri − r cos(θ − θk) + ξi, j] (19)

3.5. Comparison of the Magnetic Field Created by a Tile
Permanent Radially Magnetized and a Tile Permanent
Magnet Whose Polarization is Both Uniform and Radial

Tile permanent magnets whose polarization is both uniform and
radial are generally used instead of tile permanent magnets radially
magnetized (Fig. 3). However, the magnetic field they produce exhibits
some differences and thus can lower the quality of the permanent
magnet devices.

The three components of the magnetic field created by each tile
permanent magnet (radially or uniformly magnetized) are represented
in Fig. 4.
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Figure 3. Representation of two tile permanent magnets: the left one
is radially magnetized, the right one is uniformly magnetized.



60 Ravaud and Lemarquand

−0.5 0 0.5 1 1.5
−175000

−150000

−125000

−100000

−75000

−50000

−25000

0

H
r 

[A
/m

]

Angle [rad]

−0.5 0 0.5 1 1.5
0

10000

20000

30000

40000

50000

H
z 

[A
/m

]

Angle [rad]

−0.5 0 0.5 1 1.5

−100000

−50000

0

50000

100000

H
th

et
a 

[A
/m

]

Angle [rad]

Figure 4. Representation of the the radial, axial and azimuthal
components of the magnetic field created by a tile which is either
radially magnetized (thin line) or uniformly magnetized (thick line).
rin = 0.025 m, rout = 0.028 m, zb − za = 0.003 m, z = 0.0015 m,
r = 0.024 m and θ2 − θ1 = π

3 rad.
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Figure 5. Ring permanent magnet radially magnetized.

Figure 6. Assembly of several tile permanent magnets uniformly
magnetized; the vector magnetization is collinear with the line cutting
the middle of each tile permanent magnet.

4. ASSEMBLY OF TILE PERMANENT MAGNETS
UNIFORMLY MAGNETIZED FOR CREATING A RING
PERMANENT MAGNET

4.1. Study of the Wave Rate Versus the Number of Tile
Permanent Magnets Used

The stacking of several tile permanent magnets uniformly magnetized
can be used for creating the same radial field as the one created by
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a ring permanent magnet radially magnetized. Strictly speaking, the
radial field undulates in front of the tile magnets, especially at the place
where two tiles are stacked. We propose here to determine the wave
rate of the radial field created by the ring of stacked tile permanent
magnets versus the number of tiles used. The wave rate WR is defined
by

WR =
1

2Hrmoy

(|Sup[Hr]| − |Inf [Hr]|) (20)

where Hrmoy is the mean radial field at a given radial distance and a
given axial distance from the ring stacked with tile permanent magnets
uniformly magnetized.

We study three configurations owing 8, 16 and 32 tile permanent
magnets uniformly magnetized. Each tile has the same dimensions.
We take the following dimensions for all the illustrative examples: the
inner radius r1 is 0.025 m; the outer radius r2 is 0.028 m; the height
z2 − z1 is 0.003 m and J = 1 T; the observation radial distance is
r = 0.024 m and the observation axial distance is z = 0.001 m. We
represent in Fig. 7 the radial field for the three configurations.
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Figure 7. Representation of the radial field created by a ring of
stacked tile permanent magnets uniformly magnetized. The inner
radius is 0.025 m; the outer radius is 0.028 m; the height is 0.003 m
and J = 1T. (Thick line: θ2 − θ1 = π

32 rad, thin line: θ2 − θ1 = π
16 rad,

dashed line: θ2 − θ1 = π
8 rad).



Progress In Electromagnetics Research, PIER 91, 2009 63

Figure 7 clearly shows that the higher is the number of tile
permanent magnets used, the lower is the wave rate of the radial field.
We can extend this remark when we use N tile permanent magnets
uniformly magnetized. Fig. 8 represents the wave rate of the radial field
created by a ring of stacked tile permanent magnets versus the number
of tiles used. Such a representation is useful because it gives interesting
information about how many tile permanent magnets should be used
if the wave rate must be inferior to a given percentage.

10 15 20 25 30
Number of tiles

0

5

10

15

20

w
av

e
ra

te
�%
�

Figure 8. Representation of the wave rate of the radial field created by
a ring of stacked tile permanent magnets uniformly magnetized versus
the number of tiles used. For each tile, the inner radius is 0.025 m; the
outer radius is 0.028 m; the height is 0.003 m.

In addition, when N → ∞, we find the same radial field value as
the one determined by Babic and Akyel [4].

5. ILLUSTRATION: DESIGN OF AN IRONLESS
LOUDSPEAKER STRUCTURE

This section presents an example of utilization of the expressions
determined in this paper. To do so, let us consider a typical ironless
structure made of tile permanent magnets stacked together for creating
a radial field in the air gap as shown in Fig. 9. In this optimized
configuration, this ironless loudspeaker is composed of three ring
permanent magnets made of 16 tile permanent magnets uniformly and
radially magnetized.

As stated previously, the radial field undulates versus θ. By using
the analytical expressions determined in this paper, we can optimize
the tile permanent magnet dimensions for obtaining the magnetic
field whose undulation is less important. However, the number of
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Figure 9. Representation of an ironless loudspeaker with three ring
permanent magnets and two ferrofluid seals

tile permanent magnets used must be as small as possible. As it is
both difficult and expensive to stack a large number of tile permanent
magnets together, we must look for an optimal configuration that
creates a radial field whose wave undulation is as small as possible
though the number of tile permanent magnets used is as small as
possible too. The height of the tile permanent magnets is fixed in our
configuration (h = 3 mm) and the radial width of each tile permanent
magnet equals r2 − r1 = 3 mm. Therefore, the only parameter that
can be otpimized is the angular width of each tile permanent magnet,
that is, the number of tile permanent magnets used in the ironless
loudspeaker structure.

This optimization has been performed by using the three-
dimensional analytical expressions determined in this paper and the
expression of the wave undulation defined in (20). The wave undulation
must be inferior to at least 10%. The radial field created �H is used for
two different purposes. First, it is used for moving the emissive piston
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shown in Fig. 9 by using the Laplace’s force defined as follows:

�FL = I(t)d�l ∧ (μ0
�H) (21)

where I(t) is the current in the coil that is located on the emissive
piston and l is the length of the coil wire. The second objective of
this radial field is to contribute to the creation of a ferrofluid seal.
Indeed, the magnetic field created by such a structure can be used
for creating two ferrofluid seals whose shapes directly influence the
mechanical properties of the emissive oscillating piston. The shape of
this ferrofluid seal depends on the magnetic pressure that is defined as
follows:

pm(r, z) = μ0M
√

Hr(r, θ, z)2 + Hθ(r, θ, z)2 + Hz(r, θ, z)2 (22)

Therefore, the final shape of the ferrofluid seal does not undulate as
the radial field as shown in Fig. 7. However, the radial field is the most
important component that contributes to the deformation of the seal
shape. We present in Fig. 10 an example of prototypes that has been
built and optimized in our laboratory.

Figure 10. Photography of the ironless loudspeaker structure: we
have used 3 times 16 tile permanent magnets for creating two ferrofluid
seals; therefore we have θ2 − θ1 = π

8 rad; r1 = 0.02485 m, r2 =
0.04485 m, z2 − z1 = 0.02 m.

As shown in Fig. 10, between two tile permanent magnets, we see
the undulation of the magnetic field that stems mainly from the radial
field undulation. This behaviour is predicted theoretically with the
analytical expressions determined in Section 2.
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6. CONCLUSION

This paper has presented improved three-dimensional analytical
expressions of the components of the magnetic field created by tile
permanent magnets uniformly and radially magnetized. First, we
have presented the expressions of the three components Hr(r, θ, z),
Hθ(r, θ, s) and Hz(r, θ, z) created by a tile uniformly magnetized in a
compact form. Such expressions are important for practical purposes
because tile permanent magnets uniformly magnetized can be used to
manufacture a entire ring radially magnetized. Indeed, they are easier
to fabricate than arc-shaped permanent magnets radially magnetized.
In addition, we have seen that the wave rate of the radial field created
by a stacked magnet structure depends directly on the number of tile
permanent magnets used. The more we use tile permanent magnets
uniformly magnetized, the less the wave rate is important. This
element of information can be very useful for manufacturers involved
in the design of ironless loudspeakers. We have built an ironless
loudspeaker prototype with an optimized number of tile permanent
magnets. The effects observed experimentally are well predicted
theoretically. As the expressions determined in this paper have a very
low computational cost, they can be easily used for optimizing ironless
structures.
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