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Abstract—We evaluate effective dielectric permittivity and electric
conductivity for water-saturated rocks based on a realistic model of a
representative cell of the pore space which has periodical structure.
We have applied the method of two-scale homogenization of the
Maxwell equations, which results in up-scaling coupled equations at
the microscale to equations valid at the macroscale. We have analyzed
the interfacial Maxwell-Wagner dispersion effect and the Archie law as
well.

1. INTRODUCTION

We study behavior of the electromagnetic field in a rock with hetero-
geneous microstructure which is described by spatially periodic pa-
rameters. We subject such composite materials to the electromagnetic
fields generated by currents of varying frequencies. When the period of
structure is small compared to a domain of interest, the coefficients in
the Maxwell equations oscillate rapidly. These oscillating coefficients
are difficult to treat numerically in simulations. Homogenization is a
process in which the composite material with microscopic structure
is replaced by an equivalent material with macroscopic, homogeneous
properties. In this process of homogenization, the rapidly oscillating

Corresponding author: V. V. Shelukhin (shelukhin@hydro.nsc.ru).



176 Shelukhin and Terentev

coefficients are replaced by new effective constant coefficients. The
primary objective of homogenization is to replace a system with pe-
riodically varying coefficients by a limiting homogeneous system that
facilitates computations.

This way we develop a mixing rule and created a computer
code which works well both for DC and AC frequencies. The code
was successfully tested by means of comparing effective parameters
obtained by the two-scale homogenization presented here and those
computed by traditional mixture formulae such as Rayleigh formula or
Bruggeman formula. We address the Maxwell-Wagner dispersion effect
and Archie’s formula. We do not consider here complex geometrical
structures and polarization of the double electric layer so our numerical
results are applicable to sandstones only.

The concept of two-scale homogenization is a well established tool
in the theory of partial differential equations with rapidly oscillating
periodic coefficients. The results apply to the equations which aries
in porous media, elastic deformation, acoustics, electromagnetism,
material sciences, and heat conduction. To justify the approach,
mathematical theories have been developed including two-scale
expansions, G-convergence, compensated compactness, and two-scale
convergence [1, 4, 6, 7, 11–13, 25–27, 30, 35, 37, 39].

A significant amount of research has been done recently on
two-scale homogenization of Maxwell’s equations. It was proved in
many studies that the macroscopic Maxwell equations can be strongly
different from the microscopic ones: instantaneous material laws turn
into constitutive laws with memory [13, 17–25]. More general case
has been considered in [26], with polarization of composite ingredients
being not instantaneous but obeying the Debye or Lorenz polarization
laws with relaxation. Complexity of the macroscopic constitutive laws
is discussed in [27, 28].

The structure of the macroscopic constitutive law can be described
in great depth by addressing the time-harmonic Maxwell equations
[29–32]. We further develop this research by calculating the effective
dielectric constant εh and effective electric conductivity σh for different
values of the angular frequency ω of a source current in the case of
several geometric configurations applicable to rock formations. The
frequency dispersion of εh and σh is of importance for the reservoir
logging [33]. We prove that the macroequations are different for low
and high frequencies when the mixture ingredients are conductive. The
result is obtained by the two-scale expansion approach, with δ = l/L
being a small parameter and the ratios ls/l and lw/l being taken into
account. Here, l is the size of the reference cell of a periodic structure;
L is the macroscale size; lw is the wave length; and ls is the skin



Progress In Electromagnetics Research B, Vol. 14, 2009 177

layer length. Observe that both lw and ls depend on ω, the angular
frequency of a time-harmonic source current.

The cited publications on the time-harmonic Maxwell equations
address homogenization only at low frequencies when the period of
the microstructure is small compared to the wave length. Besides,
the authors of previous publications do not take into account the
skin layer effect while making homogenization. Paper [32] does not
involve numerical calculations, and its main result is a mathematical
theorem which justifies the macroscopic harmonic Maxwell equations
at a fixed low frequency with penetrable boundary conditions. Both
the variation of frequency and frequency dispersion of the effective
dielectric permittivity are not addressed in [32]. Moreover, the
formulas for the effective permittivity and conductivity are restricted to
non conductive mixture components; this is why the dispersion effect
could not be fixed in this study since the formulas for the effective
parameters do not involve the frequency at all.

Numerical evaluation of effective permittivity and effective
conductivity on the basis of the two-scale homogenization theory was
performed in many publications including [31] for the time-harmonic
Maxwell equations (see [26]). The main result of [31] is a successful
testing of the numerical algorithm at a fixed low frequency both
by comparison of the calculated effective conductivity with those
predicted by the Maxwell-Garnett approach [1] and by comparison
with an exact electric field related to a specific boundary value
problem for the Maxwell equations for the case when inclusions are
less conductive than the host medium. As in [31], we also perform
numerical evaluation of the effective parameters within the framework
of the two-scale homogenization theory but we do not restrict ourselves
to the algorithm testing at a fixed frequency. Keeping in mind
geophysical applications, we study how effective permittivity and
effective conductivity depend on frequency (of a logging tool) for the
real rocks when both the less conductive component and the higher
conductive component of the mixture form interconnecting structures
and when the components conductivity contrast is very high.

The dispersion effect considered in the present paper is due to the
Maxwell-Wagner mechanism: free charges concentrate on interphase
surfaces to provide continuity of electric currents across such surfaces.
This is why resulting polarization of the mixture depends on the source
current frequency. When passing to clay-containing rocks one should
also take into account bound charges concentrating on the interface
surfaces. Such rocks are not considered here.

An important point of the two-scale homogenization method
is that the macroscopic material laws are derived by solving
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microequations defined on the reference cell. In the case of Maxwell
equations, such microscopic equations are reduced to an elliptic system
of equations with discontinuous coefficients, which generally can be
solved only numerically. To this end we apply a finite element method.
But there are some special solid-fluid geometric cell structures when the
microequations can be solved analytically. We address a layered and a
checkerboard structures to derive formulae for the effective dielectric
permittivity and effective electric conductivity at different frequencies.
Such a methodical result both serves to test the homogenization
approach by comparison with different theories and explains that
dispersion of dielectric constant may occur at low frequencies due to
complex cell geometry.

Effective electrophysical parameters of electrocomposites were also
studied by different physical arguments in [1, 34–37].

The code we developed enables us to report on the statistical
Archie’s law (1942) which relates effective conductivity to porosity.
We discuss limitations of this law and justify its relevance to granular
systems evolving geologically from unconsolidated, high-porosity
packings toward more consolidated, less porous, materials. The role of
geometrical configuration of conducting and non-conducting phases in
reservoir rocks was addressed in [2, 38] in the case of low frequencies.

The dispersion effect considered in the present paper is due to the
Maxwell-Wagner mechanism: free charges concentrate on interphase
surfaces to provide continuity of electric currents across such surfaces.
This is why resulting polarization of the mixture depends on the source
current frequency. When passing to clay-containing rocks one should
also take into account bound charges concentrating on the interface
surfaces. Such rocks are not considered here.

2. HOMOGENIZATION OF THE MAXWELL
EQUATIONS

2.1. General Periodic Structures

Since water-saturated rocks are notoriously heterogeneous, it is
important to have some means of studying the effects of these
heterogeneities on the electric fields. To this end, we apply a two-
scale homogenization approach. This method requires the microscale
length l of the heterogeneous porous medium to be much smaller than
the macroscale length L, the latter being of most interest. The method
is systematic, leading to Maxwell’s equations at the macroscale from an
analysis of the microscale variation of electromagnetic parameters (the
dielectric permittivity ε, the electric conductivity σ, and the magnetic
permeability μ).
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Given density of the time-harmonic source current Js = e−iωtf(x),
the incident electric and magnetic fields E := e−iωtE(x), D :=
e−iωtD(x), H := e−iωtH(x), B := e−iωtB(x), J := e−iωtJ(x) solve
the Maxwell equations in the SI system of units

−iωD = curlH − J − f , iωB = curlE, (1)

with the material laws

D = ε(x)E, B = μ(x)H, J = σ(x)E. (2)

It is assumed that the mixture components are isotropic media.
Periodic rock structure implies that the material functions in (2) are
periodic:

ε(x1 + l1, x2, x3)=ε(x1, x2 + l2, x3)=ε(x1, x2, x3 + l3)=ε(x1, x2, x3),

for any x. Similar properties hold for σ and μ. We use the small ratios

lj
L

= rjδ, min{r1, r2, r3} = 1,

where δ is a small dimensionless parameter. The dimensionless
parameters rj characterize deviation of the representative cell of
periodicity Y δ = {0 < xi < li} from a regular cube. Particularly,
r1 = r2 = r3 = 1 provided all the sizes lj are equal. We exclude the
magnetic fields to obtain the Helmholtz-like equation

curl
(
μ−1curlE

)
= χ2E + iωf , χ2 = iω(σ − iωε). (3)

When equation (3) is considered in the entire space, one should set
some conditions at infinity. Normally, these are radiation conditions.

Let Y δ
f and Y δ

s be the subdomains of Y δ occupied by fluid and solid
respectively, Y δ

f ∪ Y δ
s = Y δ, and Γδ be the interface between the solid

and fluid. For simplicity, we consider a composite material with two
different components. The coefficients in the Eq. (3) are discontinuous
step functions; their restrictions to the representative cell Y δ are given
by the formulae

ε, μ, σ =
{

εs, μs, σs, if x ∈ Y δ
s ,

εf , μf , σf , if x ∈ Y δ
f .

(4)

The boundary conditions at the interfaces Γδ is continuity of n × E
and n× μ−1rotE, where n is the unit normal vector to Γδ.

As we explain in appendix, the two-scale homogenization approach
involves assuming that the field E can be treated as if it is a function
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of two spatial scales x and y = x/(Lδ), with y ∈ Y = {0 < yj < rj}.
The macroscale is x and the microscale is y. Spatial derivatives of E
can then be usefully written as

curlE(x, x/(δL)) =
{

curlxE(x, y) +
1
δL

curly E(x, y)
}
|y=x/(δL). (5)

Thus, the scale separation can be explicitly accounted for in such a
derivative equation. Furthermore, the field E can also be treated as a
function of δ, so that an asymptotic expansion of the form

E(x, y, δ) = E0(x, y) + δE1(x, y) + o(δ) (6)

may be written. Combining (5) and (6) we arrive at

curlE =
1
δL

curly E0(x, y) + curlx E0(x, y) +
1
L

curly E1(x, y) + O(δ),

where y = x/δL, a result which gets used repeatedly in the subsequent
analysis. This approach requires a great deal of mathematical insight.
All the proofs are given in appendix; here we reproduce final results
only. Notice that all the calculations in Appendix are performed in
the Gauss system of units with the aim to correctly take into account
both the wave length lw and skin layer length ls while dealing with
the expansion series (6). Here and in the main body of the paper
we use the SI system keeping in mind presentation of our numerical
calculations and comparison with results published elsewhere.

The incident electric field E(x) is well-approximated by the macro-
field Ẽ(x):

E(x) = Ẽ(x) + Ẽj(x)∇yw
j
ε(y) + O(δ), where yj =

rjxj

lj
. (7)

Here, wj
ε(y) are dimensionless periodic micro-potentials which solve

the following boundary-value problems in the cell Y :

∂

∂yp

{
(σ(y) − iωε(y))

∂

∂yp

(
yj + wj

ε(y)
)}

= 0,
∫
Y

wj
ε(y)dy = 0. (8)

The present method produces definite formulae for the effective
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matrices εh, σh, and μh with the help of the micro-potentials:

εh
pj =

1
|Y |

∫
Y

ε(y)
∂

∂yp

(
yj + wj

ε(y)
)
dy, |Y | = r1r2r3, (9)

σh
pj =

1
|Y |

∫
Y

σ(y)
∂

∂yp

(
yj + wj

ε(y)
)
dy, (10)

μh
pj =

1
|Y |

∫
Y

μ(y)
∂

∂yp

(
yj + wj

μ(y)
)
dy. (11)

Here, wj
μ(y) are dimensionless periodic micro-potentials which are

solutions to the following boundary-value problems in the cell Y :

∂

∂yp

{
μ(y)

∂

∂yp

(
yj + wj

μ(y)
)}

= 0,
∫
Y

wj
μ(y)dy = 0. (12)

As proved in [13], it follows from (8) and (12) that the matrices εh
pj,

σh
pj, and μh

pj are symmetric. The micro-potentials wj
ε are holomorphic

functions of frequency; therefore the Kramers-Kronig relations [39] are
fulfilled for the real and imaginary parts of the permittivity function
εh
pj(ω).

We prove in appendix that, whereas formulae (9)–(11) are valid
over wide ranges of frequency, the macro-equations for the field Ẽ(x)
are different for low and high frequencies. The low-frequency macro-
equation is

curl
{(

μh
)−1 · curlẼ

}
− (χ2)h · Ẽ = iωf , (13)

where (
χ2

)h

pj
= iω

(
σh

pj − iωεh
pj

)
.

For high frequencies, the macro-field Ẽ(x) is the solution to the
equation

−(χ2)h · Ẽ = iωf . (14)

2.2. Layered Structure

Let us test the method on a material with the representative cell
composed of two layers (Fig. 1(a)):

ε(y), μ(y), σ(y) =
{

εf , μf , σf , if 0 < y3 < Φfr3,
εs, μs, σs, if Φfr3 < y3 < r3,

(15)



182 Shelukhin and Terentev

(a) (b) (c) (d) (f)

Figure 1. Cell geometry structures: (a) layer (intersection with
the plane y2 = const), (b) checkerboard (intersection with the plane
y3 = const), (c) sphere, (d) Qr

8-cell with r = 0.5, (f) Qr
9-cell (only

sphere centers).

where 0 < Φf < 1. The cell-problems (8) can be solved analytically.
Particularly, one can verify that w1

ε(y) = w2
ε(y) = 0. Hence, εh

pj = 0
and σh

pj = 0 provided p �= j, and

εh
11 = εh

22 = Φfεf + Φsεs, σh
11 = σh

22 = Φfσf + Φsσs,

where Φf is the porosity and Φs ≡ 1 − Φf . Eq. (8) for w3
ε(y) becomes

χ2(y)
d

dy3

(
y3 + w3

ε

)
= b0 = const,

r3∫
0

w3
εdy3 = 0. (16)

We arrive at 1/b0 = Φf/χ2
f + Φs/χ

2
s. Hence,

εh
33 =

iωεfεs − (Φfεfσs + Φsεsσf )
iω (Φfεs + Φsεf ) − (Φfσs + Φsσf )

, (17)

σh
33 =

iω (Φfεsσf + Φsεfσs) − σfσs

iω (Φfεs + Φsεf ) − (Φfσs + Φsσf )
. (18)

It should be noted that these formulae coincide with the Maxwell-
Wagner laws for the circuit of two layers [40, 41].

We calculate

εh
33(ω) − εh

33(∞)
εh
33(0) − εh

33(∞)
=

1
1 − iτh

33ω
, τh

33 ≡ Φfεs + Φsεf

Φfσs + Φsσf
. (19)

It implies that the homogenized medium obeys a Debye polarization
law [42] (in x3-direction)

D = E + P, P = P1 + P2, P1 = χ1E,
d

dt
P2 =

χ2E − P2

τ
,
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with relaxation time τ = τh
33 and

χ1 = εh
33(∞) − 1, χ2 = εh

33(0) − εh
33(∞).

Thus, whereas polarization of both the ingredients is instantaneous
(P = χ1E, with χ1 = εs − 1 for the solid component and χ1 = εf − 1
for the fluid component), polarization of the homogenized media (in
x3-direction) consists of the instantaneous part P1 and relaxation part
P2.

We analyzed dispersion curves by switching to the effective
parameters

σe = Re(σh
33)

∗, εe = −Im(σh
33)

∗/ω,

(σh)∗ ≡ σh − iωεh, σ∗
s,f ≡ σs,f − iωεs,f .

We have

σe(ω) =
aσ + dσω2

c + bω2
, εe(ω) =

aε + dεω
2

c + bω2
, (20)

where

aσ = σfσs(Φfσs + Φsσf ), dσ = εsεsσfΦf + εfεfσsΦs,

aε = σfσfεsΦs + σsσsεfΦf , dε = εfεs(Φfεs + Φsεf ),

b = (Φfεs + Φsεf )2, c = (Φfσs + Φsσf )2.

Because of the formulae

d

dω
σe =

Aσω

(c + bω2)2
,

d

dω
εe =

Aεω

(c + bω2)2
,

d2

dω2
σe =

Aσ(c − 3bω2)
(c + bω2)3

,
d2

dω2
εe =

Aε(c − 3bω2)
(c + bω2)3

,

where Aσ = 2(dσc−aσb) > 0, Aε = 2(dεc−aεb) < 0, the function σe(ω)
is increasing (Fig. 2) and εe(ω) is decreasing as ω → ∞ (Fig. 3). There
is a unique Maxwell-Wagner angular frequency ωmw, ω2

mw = c/(3b), a
center of dispersion, such that the second derivative of both functions
with respect to ω vanishes at ω = ωmw, and the maximum of gradient
both of σe(ω) and εe(ω) reaches the dispersion center ωmw. If σs

is small enough to where σsεf < σfεs, then the dispersion center
ωmw(Φf ) becomes decreasing and drops to values between σs/

(√
3εs

)
and σf/

(√
3εf

)
.
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Figure 2. Dispersion of effective conductivity for the layered structure
as in Fig. 1(a) when σs = 10−12 (S/m), σf = 25 (S/m), εs/ε0 = 4,
εf/ε0 = 60.

2.3. Checkerboard Structure

There is one more geometrical structure where the effective parameters
can be calculated analytically on the basis of Eq. (8). Let the
intersection of the representative cell Y with the plane y3 = const be
like in Fig. 1(b). When both of the components are non-conductors, it
can be proved as in [5] that

εh
11 = εh

22 =
√

εfεs, εh
33 = (εf + εs)/2, εh

pj = 0 if p �= j.

These formulae were derived via different arguments in [43]. This
square root law is also true for AC frequencies: (σh

jj)
∗ =

√
σ∗

f σ∗
s ,

j = 1, 2.

3. DISPERSION CURVES

We solve the cell problems by the finite elements method. The code
we developed was tested successfully by solving the cell problems for
the layered and checkerboard periodical structures. In Fig. 3 there is
a plot of the effective dielectric permittivity dispersion function εe(ω)
for a layered medium and two different values of porosity Φf . One can
observe that the values of εe for low frequencies can be many times
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Figure 3. Dispersion of relative effective dielectric permittivity for
the layered structure as in Fig. 1(a). The component data are those in
Fig. 2.

greater than the component data εs and εf . This effect is due to
high capacity of thin weakly conductive layers and a phase shift of the
conduction current. On the other hand, homogenized permittivity εh

does not differ significantly from the component data εs and εf for
DC frequencies (Fig. 4). The dielectric constant may show dispersive
behavior at low frequencies when solid layers are thin. This suggests
that the Maxwell-Wagner dispersive behavior at low frequencies may
occur for media with complex geometrical structure as well. It should
be noted that a theory was also developed in [44] to explain why high
values of the effective permittivity εe for low frequencies occur in rocks
with high porosity, composed of thin plate solid grains. But it is unclear
if this explanation is adequate as far as dispersion in clays is concerned,
because such rocks are characterized by low porosity.

There is a number of outstanding mixing laws for electrocompos-
ites [1]. We perform comparison with the formula

σ∗

σ∗
f

= 1 − 3Φs

[2 + Δ
1 − Δ

+ Φs − 1.306Φ10/3
s

4/3+Δ
1−Δ + 0.4072Φ7/3

s

−2.218 × 10−2(1 − Δ)Φ14/3
s

6/5 + Δ

]−1
, Δ = σ∗

s/σ
∗
f , (21)

which is an extension of the Zuzovsky-Brenner formula [45] for AC
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Figure 4. Real and imaginary parts of the homogenized relative
dielectric permittivity versus frequency for the layered structure as
in Fig. 1(a) for two values of porosity. The component data are those
in Fig. 2.

frequencies, derived by the Bruggeman approach. The law (21) is the
result of calculations for the effective conductivity of a simple cubic
array of spheres (with the data σs and εs) embedded in a matrix (with
the data σf and εf ) versus volume fraction of spheres Φs. The plots
in Fig. 5 and Fig. 6 calculated for DC frequencies show that the two-
scale homogenization rule, derived for the case when Ys is a sphere
(Fig. 1(c)), agrees well with the rule (21) up to Φs close to 0.5. The
homogenization results begin to diverge from the mixing formula (21)
near the point Φs = 0.5 due to limitations of the latter.

Next, we consider two more periodical structures. The first,
termed Qr

8, is formed of eight solid spheres of the same radius r centered
at the unit cube vertices. Its configuration is given in Fig. 1(d).
(Clearly, configurations in Fig. 1(c) and Fig. 1(d) are geometrically
identical if the spheres do not intersect each other.) To take into
account the formation process of sedimentation rocks, we perform
calculations for various values of r, from r = 0.5, when a sphere
touches neighboring spheres (and when the corresponding Φf, max is
approximately equal to 0.4764), to rp =

√
2/2 (with the corresponding

percolation value of Φf equal to Φp 
 0.0349), when the pore space
loses connectivity. The grains are allowed to swell equally in all
directions to be interpenetrable until the desired volume fraction Φs
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Figure 5. Effective conductivity at two different frequencies versus
volume fraction of the sphere inclusions as in Fig. 1(c). The solid curves
are calculated by the homogenization approach; the dotted curves are
given by the mixing rule like (21). Two upper curves correspond to
1011 (Hz); two curves below correspond to 103 (Hz). The component
data are σs = 1 (S/m), σf = 0.1 (S/m), εs/ε0 = 5, εf/ε0 = 50,
ε0 = 8.85 × 10−12.

Figure 6. Reduced effective dielectric permittivity at two different
frequencies versus volume fraction of the sphere inclusions as in
Fig. 1(c). The solid curves are calculated by the homogenization
approach; the dotted curves are yielded by a mixing rule like (21). Two
upper curves correspond to 103 (Hz); two curves below are practically
identical and correspond to 1011 (Hz). The component data are
σs = 1(S/m), σf = 0.1(S/m), εs/ε0 = 5, εf/ε0 = 50, ε0 = 8.85×10−12.
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is attained. The homogenized medium is isotropic, and the dispersion
curves are plotted in Fig. 7 and Fig. 8. To calculate Φf, max and Φp

one can use the following simple diagenesis law [38]

Φ(r) = 1 − π

6
− π

2

(r

2
− 1

)
+

π

4

(r

2
− 1

)2
+

π

3

(r

2
− 1

)3
,

which describes how porosity depends on increasing vertex sphere
radius. Diagenesis is the process by which granular systems evolve
geologically from unconsolidated, high-porosity packings toward more
consolidated, less porous, materials. This model retains essential
features of many granular porous systems: (1) the pore spaces and
grains form interconnecting channels, (2) grains are of comparable size,
and (3) the grains are joined at contacts that extend over a finite area.

To permit higher tortuosity, we consider the Qr
9-cell which is the

Qr
8-cell with one more solid sphere of radius r in the center of the cube

(Fig. 1(f)). The grains grow equally in all directions. Radius r varies
from

√
3/4, when the center sphere touches the vertex spheres (and

when the corresponding Φf, max is approximately equal to 0.3198), to
some value rp = 3/

√
32 
 0.5303 (with the corresponding percolation

value of Φf equal to Φp 
 0.0055), when pore fluid becomes isolated.
The homogenized medium is isotropic, and the dispersion curve does
not differ significantly from the Qr

8-cell case.
We comment on applications. In typical sandstone rocks, the pore

size is such that the microscale length l is close to 5 · 10−2 m, and the

Figure 7. Dispersion of effective conductivity for the Q8-structure as
in Fig. 1(d). The component data are those in Fig. 2.
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Figure 8. Dispersion of relative effective dielectric permittivity for
the Q8-structure as in Fig. 1(d). The component data are those in
Fig. 2.

Figure 9. Effective conductivity versus porosity for DC frequencies
via homogenization approach. The component data are those in Fig. 2.

average electric conductivity σf of the pore fluid is 25 S/m. Commonly,
the characteristic frequency f of geophysical logging devices does not
exceed 2 · 106 Hz. In this case conditions (A6) are satisfied with
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δ ≤ 10−2, and the homogenized Maxwell equations are given by (13).
It follows from Fig. 7 and Fig. 8 that the dispersion effect occurs for
frequencies which are much higher than 2 · 106 Hz.

4. ARCHIE-LIKE LAWS

The homogenization formulae derived in Section 2 enable us to plot
σh versus the fluid volume fraction Φ ≡ Φf for DC frequencies. It
easily follows from (10) that the law σh(Φ) is an interpolation function:
σh

pj(0) = σsδpj and σh
pj(1) = σfδpj, where δpj = 1 if p = j and δpj = 0

otherwise. It should be noted that the Archie law (1942) σ/σf = Φm is
also an interpolation formula if σs = 0; in contrast, the mixing rule (21)
does not meet this important requirement.

We perform calculations of σh(Φ) for DC frequencies both for
Qr

8 and Qr
9 structures (Fig. 9). “Cementation growth” of r results in

pore volume decrement, i.e., decrease of Φ. For both configurations,
the function σh(Φ) vanishes when Φ = Φp, the percolation threshold
depending on the configuration. The fact that the Qr

8-curve is below
the Qr

9-curve can be explained as follows. To be of the same porosity
as the Qr

9-structure rock, the Qr
8-configuration should be composed of

spheres with great enough radius. As a result, the Qr
8-configuration

has narrower minimal pore throats, lower permeability, and lower
conductivity than the Qr

9-configuration rock of the same porosity.
Geometrical aspects of pore throats are discussed thoroughly in [2, 38].

If the Archie formula were in agreement with the homogenization
curve σh(Φ), the derivative m = ∂ln(σh/σf )/∂lnΦ would be constant
as a function of Φ. For both Qr

8 and Qr
9 geometries, Fig. 10 and Fig. 11

show that variation of the cementation factor m versus Φ is significant.
Similarly, if one substitutes the Archie law by the Archie percolation
formula

σ = aσf (Φ − Φp)m, a = const, m = const, (22)

the derivative m(φ) = ∂ln(σh/σf )/∂ln(Φ − Φp) will fail to be
constant also (Fig. 10, Fig. 11) both for Qr

8 and Qr
9 cases though

∂ln(σh/σf )/∂ln(Φ−Φp) is much closer to a constant then the function
∂ln(σh/σf )/∂lnΦ. Nevertheless, one may attempt to find the best
Archie approximation for σh(Φ) among functions (22). To define
suitable a and m, we minimize the functional

J(a, m) ≡
Φ1∫

Φ2

{
ln σh(Φ) − ln [aσf (Φ − Φp)m]

}2
dΦ.
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Figure 10. Cementation factor versus porosity via homogenization
approach for the Q8 structure as in Fig. 1(d). The component data
are those in Fig. 2.

Figure 11. Cementation factor versus porosity via homogenization
approach for the Q9 structure as in Fig. 1(f). The component data are
those in Fig. 2.
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Here, Φ1 is the maximal porosity; Φ1 = 0.476 and Φ1 = 0.320 for
the Qr

8 and Qr
9 geometries respectively. We take Φ2 = 0.13683 for the

Qr
8-case and Φ2 = 0.09636 for the Qr

9-case as the minimal porosities
to meet available data on Archie-like statistical formulae. Calculations
reveal that a = 1.20332 and m = 1.46 for the Qr

8-case, and a = 1.1914
and m = 1.42 for the Qr

9-case.
Let us comment on tortuosity of the Qr

9-structure. If the spheres
overlapping is small the fluid channels are not tortuous enough since
they contain thin pure fluid tubes of infinite length. Such fluid tubes
disappear if the overlapping is strong; it occurs when the sphere radius
r becomes greater than rt = 1/2, with the corresponding porosity Φt.
One can observe in Fig. 11 that m(Φ) attains a local maximum when
Φ = Φt.

5. CONCLUSIONS

We developed a mixing law theory for effective dielectric permittivity
and effective electric conductivity by two-scale homogenization of the
Maxwell equations. We have proved that the homogenized Maxwell
equations are different for low and high frequencies. The approach is
well justified for rocks with periodical structure, and it gives rise to a
numerical algorithm which works well both for DC and AC frequencies.
The code was tested successfully for the cubic array of nonintersecting
spheres embedded in a matrix by means of comparing effective
parameters obtained by the two-scale homogenization presented here
and those computed by traditional mixture formulae such as the Hanai-
Bruggeman formula.

As for real rock structures, calculations were performed for two
rock models, with solid grains being intersecting spheres of the same
radius. The first periodicity cell is formed of eight spheres centered
at the unit cube vertices. The second cell of periodicity has one more
sphere in the center of the cube. The Maxwell-Wagner dispersion effect
is revealed to take place at rather high frequencies. Nevertheless, a shift
of the Maxwell-Wagner dispersion phenomena into the low frequency
domain is possible when the rock cell is filled with plate grains. This
suggestion is due to the analytic dispersion curve which we found for
the cell with layered structure.

The homogenization method enables us to comment on the
Archie formula. New inconsistencies of the Archie law were
discovered. Particularly, we made it clear that porosity was not
the only geometrical factor of importance in calculating effective
conductivity (Fig. 9); the percolation threshold should be taken
into account as well, and the cementation factor m depends
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significantly on the interval where porosity varies. Interestingly,
according to our calculations, the value of m is close to 1.5 for the
best Archie percolation approximation (22) of the homogenization
conductivity/porosity curve.

Though in the present paper we considered rocks with simple
geometrical structures, the method can be applied to rocks with
complex structures as well, in contrast to other mixing rules. Moreover,
the method allows us to take into account polarization of solid and fluid
components.
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APPENDIX A.

Here, we use the Gauss system of units. It enables us to correctly check
different terms of the Maxwell equations against the small parameter δ
defined in Section 2.1. To make presentation self-consistant, we develop
a two-scale asymptotic analysis of the Maxwell equations making some
important repetitions of the calculations performed in Section 2.1.
Given density of the time-harmonic source current Js = e−iωtf(x), the
incident electric and magnetic fields E := e−iωtE(x), D := e−iωtD(x),
H := e−iωtH(x), B := e−iωtB(x), J := e−iωtJ(x) solve the Maxwell
equations

− iω

c
D = curlH − 4π

c
J − 4π

c
f ,

iω

c
B = curlE, (A1)

with the material laws

D = ε(x)E, B = μ(x)H, J = σ(x)E. (A2)

We exclude the magnetic fields to switch to the Helmholtz-like equation

curl
(

1
μ

curlE
)

= κ2E +
i4πω

c2
f , κ2 =

ω2ε + i4πσω

c2
. (A3)

With Ê standing for the reference value of E, we introduce the
dimensionless variables x′

i = xi/L and

E′ =
E

Ê
, D′ =

D

Ê
, H′ =

H

Ĥ
, B′ =

B

Ĥ
, J′ =

J

Ĵ
, f ′ =

f

Ĵ
, ω′ =

ω

ω̂
, σ′ =

σ

σ̂
.
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Let ε̂ and μ̂ be reference values of ε and μ, ε =ε̂ε′, μ =μ̂μ′. We chose
Ĵ = σ̂Ê, then, in the dimensionless variables, Eq. (A3) becomes

curl′
(

1
μ′ curl′E′

)
− κ′2E′ = ia14πω′f ′, (A4)

where

κ′2 = ω′2ε′
L2

l2w
+ i4πσ′ω′L2

l2s
, a1 =

L2

l2s
, lw =

c

ω̂
√

μ̂ε̂
, ls =

c√
ω̂σ̂μ̂

;

here, lw is the wave length and ls is the skin layer length.
We perform asymptotic analysis of Eq. (A4), assuming that δ is a

small parameter. We apply the two-scale homogenization approach [13]
and use the dimensionless micro-variables

yj =
x′

j

δ
, y ∈ Y = {0 < yj < rj}.

Here Y is the dimensionless periodicity cell; it consists of solid and
fluid parts, Y = Ys ∪ Yf :

ε′(y), μ′(y), σ′(y) =
{

ε′s, μ′
s, σ′

s, if y ∈ Ys,
ε′f , μ′

f , σ′
f , if y ∈ Yf . (A5)

The exact meaning of the assumption on the periodic rock
structure is that the coefficients ε′, σ′, and μ′ in Eq. (A4) are periodic
step functions

ε′
(

x′

δ

)
, μ′

(
x′

δ

)
, σ′

(
x′

δ

)
,

with the period δrj in each variable x′
j. First, we consider the case of

low angular frequencies ω̂, i.e., we assume that the skin layer length
and wave length are greater than the cell size:

lj
ls

= αj
sδ,

lj
lw

= αj
wδ. (A6)

For simplicity, we assume that the ratios αj
s/rj and αj

w/rj are
independent of index j.

Under the hypothesis (A6), we have

L

ls
=

α1
s

r1
≡ αs,

L

lw
=

α1
w

r1
≡ αw.
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Hence, κ′2 does not depend on δ and

κ′2 = α2
wω′2ε′ + i4πα2

sω
′σ′. (A7)

For simplicity, we drop the prime superscript in what follows. We
denote

curlE(x)
μ(x/δ)

= M(x), κ2(x/δ)E(x) = N(x). (A8)

Thus,
curlM− N = i4πωα2

sf . (A9)

We look for a solution of (A8) and (A9) in the form

E(x) = {E0(x, y) + δE1(x, y) + o(δ)}|y=x/δ , (A10)

M(x) = {M0(x, y) + δM1(x, y) + o(δ)}|y=x/δ , (A11)

N(x) = {N0(x, y) + δN1(x, y) + o(δ)}|y=x/δ , (A12)

where all the functions are periodic in variable yj with period rj . It
should be noted that variables x, y, and δ in these formulae are treated
as independent and

curlEk(x, x/δ) =
{

curlx Ek(x, y) +
1
δ
curly Ek(x, y)

}
|y=x/δ.

Putting the representation formulae (A10)–(A12) in (A8) and (A9),
one can write each of these equalities in the form

0∑
−1

δk(· · · )k + O(δ) = 0.

To find all the coefficients in the series (A10)–(A12), one should solve
all the equations (· · · )k = 0, k = −1, 0. Particularly, one would find
from (A8) that

curlyE0 = 0, M0 =
1

μ(y)
(
curlxE0 + curlyE1

)
,

N0 = κ2(y)E0. (A13)

Let
Ẽ(x) =

1
|Y |

∫
Y

E0(x, y)dy
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stand for the average value of E0(x, y) over the cell Y ; the functions
M̃(x) and Ñ(x) are defined similarly. It follows from (A13)1 that there
is a periodic (in the variable y) function ϕ0(x, y) such that

E0(x, y) = Ẽ(x) + ∇yϕ
0(x, y). (A14)

On the other hand, because of (A9), we have

div(N + i4πα2
sωf) = 0. (A15)

Making use of the representation formula (A12) and the formula

divN0(x, x/δ) =
{

divxN0(x, y) +
1
δ
divyN0(x, y)

}
|y=x/δ, (A16)

we conclude from (A15) that divyN0 = 0. Now, it follows from (A13)3
and (A14) that the function ϕ0(x, y) is periodic in y and solves the
equation

divy

{
κ2(y)

(
Ẽ + ∇yϕ

0
)}

= 0. (A17)

We look for ϕ0(x, y) by the method of separation of variables in the
form

ϕ0(x, y) = Ẽj(x)wj
ε(y),

where wj
ε is periodic in y. Putting this sum into (A17), one can

uniquely define functions wj
ε(y) as periodic solutions to the cell

boundary-value problems

∂

∂yp

{
κ2(y)

∂

∂yp

(
yj + wj

ε(y)
)}

= 0,
∫
Y

wj
ε(y)dy = 0. (A18)

Function κ2(y) is discontinuous across the surface Γ separating solid
and fluid domains of Y ; therefore Eq. (A18)1 holds in the distribution
sense. Particularly, Eq. (A18)1 suggests that the following no-jump
condition is true at Γ: [

κ2n · ∇(yj + wj
ε)

]
= 0,

where the brackets [f ] stand for a jump of a discontinuous function
f across Γ and n is the unit normal vector to Γ. Given the micro-
functions wj

ε(y), we find from (A13)3 that

Ñ =
1
|Y |

∫
Y

κ2(y)E0(x, y)dy or Ñp(x) = (κ2)hpjẼj(x), (A19)
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where
(κ2)hpj =

1
|Y |

∫
Y

κ2(y)
∂

∂yp

(
yj + wj

ε(y)
)
dy. (A20)

We use the superscript h both to emphasize that the constant matrix
(A20) is a material parameter of a homogenized medium and to
distinguish this constant matrix from the step function (A7).

We return to (A9) and find, because of (A11) and (A12), that

curlyM0 = 0. (A21)

On the other hand, we obtain from (A16) and the equality
div(μ(x/δ)M) = 0 that

divy

(
μ(y)M0

)
= 0. (A22)

By the same arguments as in the case of the function E0, we derive
from (A21) and (A22) that

M0(x, y) = M̃(x) + M̃j(x)∇yw
j
μ(y), (A23)

where the periodic functions wj
μ(y) solve the cell problems

∂

∂yp

{
μ(y)

∂

∂yp

(
yj + wj

μ(y)
)}

= 0,
∫
Y

wj
μ(y)dy = 0. (A24)

We multiply (A13)2 by μ(y) and integrate over the cell Y taking
into account that

∫
Y curly E1 dy = 0 by periodicity. As a result, we

obtain
curlx Ẽ =

1
|Y |

∫
Y

μ(y)M0(x, y)dy

or (
curlx Ẽ

)
p

= μh
pjM̃j(x), (A25)

where
μh

pj =
1
|Y |

∫
Y

μ(y)
∂

∂yp

(
yj + wj

μ(y)
)
dy. (A26)

It follows from (A9) that

curlxM0 + curlyM1 − N0 = i4πωa1f .
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We integrate it over the cell Y to arrive at the equality

curlxM̃− Ñ = i4πωα2
sf . (A27)

Again, we have used that
∫
Y curly M1 dy = 0 by periodicity. Thus,

putting together equalities (A27), (A19), and (A25), we obtain the
macro-equation

curlx

{(
μh

)−1 · curlx Ẽ
}
− (κ2)h · Ẽ = i4πωα2

sf , (A28)

where
(
μh

)−1 is the inverse of matrix μh.
Let us consider the case of high frequencies:

lj
ls

=
αj

s

δm
,

lj
lw

=
αj

w

δm
, m ≥ 0, (A29)

where the ratios αj
s/rj and αj

w/rj are independent of index j. With
this hypothesis at hand, we have

L

ls
=

α1
s

δqr1
≡ αs

δq
,

L

lw
=

α1
w

δqr1
≡ αw

δq
, q ≥ 1.

Hence, κ′2 depends on δ and

κ′2 =
(k′

1)
2

δ2q
, (k′

1)
2 ≡ α2

wω′2ε′ + i4πα2
sω

′σ′. (A30)

Equation (A9) becomes

curl′
(

1
μ′ curl′E′

)
− (k′

1)
2

δ2q
E′ =

i4πω′α2
s

δ2q
f ′. (A31)

We perform asymptotical analysis of these equations dropping the
prime superscript. Denoting

curlE(x)
μ(x/δ)

= M(x), k2
1(x/δ)E(x) = N(x), (A32)

we write out Eq. (A31) as

curlM − 1
δ2q

N =
i4πωα2

s

δ2q
f . (A33)

We look for a solution of (A33) in the form (A10)–(A12). By the above
arguments, we obtain

curly E0 = 0, N0 = k2
1(y)E0, divy N0 = 0. (A34)
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Hence,
E0(x, y) = Ẽ(x) + Ẽj(x)∇yw

j
ε(y), (A35)

where the periodic functions wj
ε(y) solve the cell problems (A18) with

κ2 substituted by k2
1 . It follows from (A34)2 that

Ñp(x) = (k2
1)

h
pjẼj(x), (A36)

where the matrix (k2
1)

h
pj is given by the right-hand side of formula (A20)

with κ2(y) substituted by k2
1(y).

It follows from (A33) that

−N0 = i4πωα2
sf .

Let us integrate this equation over the cell Y , making use of the
equality (A34)2. As a result, we obtain the macro-equation in the
high frequency region:

−(k2
1)

h · Ẽ = i4πωα2
sf . (A37)

Returning to the dimensional variables, we conclude that, in the
SI unit system, the effective parameters are given by the representation
mixing formulae (9)–(11), and the macro-equations (A28) and (A37)
become (13) and (14) respectively.
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