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Abstract—In this paper, we proposed an efficient knowledge-based
Support Vector Regression Machine (SVRM) method and applied it
to the synthesis of the transmission lines for the microwave integrated
circuits, with the highest possible accuracy using the fewest accurate
data. The technique has integrated advanced concepts of SVM and
knowledge-based modeling into a powerful and systematic framework.
Thus, synthesis model as fast as the coarse models and at the same time
as accurate as the fine models is obtained for the RF/Microwave planar
transmission lines. The proposed knowledge-based support vector
method is demonstrated by a typical worked example of microstrip
line. Success of the method and performance of the resulted synthesis
model is presented and compared with ANN results.

1. INTRODUCTION

Nowadays, two typical nonlinear learning machines are widely
employed as the fast and flexible machines in the generalization of
the highly nonlinear input-output discrete mapping relations in the
microwave modeling: Artificial Neural-Network (ANN) and Support
Vector Machine (SVM). A detailed literature for the utilization of the
ANN techniques in the CAD of a variety of microwave components and
circuits can be found in [1].

On the other hand within the last decade, Vapnik’s SVM
theory [2] has been successfully applied in a wide range of classification
and regression problems, resulting in its improved generalization
performance over other classical optimization techniques. This is
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mainly because, firstly, SVM solves a convex constrained quadratic
optimization problem, whose error surface is free of local minima
and has a unique global optimum; secondly, SVM approach is based
on structural risk minimization (SRM) principle instead of empirical
risk minimization (ERM) which is used in ANN approach. SRM
principle implements well trade-off between the model’s complexity
and its generalization ability [3]. Furthermore, SVM is based on small
sample statistical learning theory, whose optimum solution is based
on limited samples instead of infinite sample that ensures enormous
computational advantages. Typical applications of the SVRM to the
microwave modeling can be found in [4–6].

Both of these nonlinear learning machines are once trained, they
are capable of responding almost instantly to any input variable set,
thus they are as fast as the approximate (coarse) models and can be
as accurate as the detailed electromagnetic (fine) models [6–9]. Here,
the key problem is to train these machines with the accurate data
which may be measured or simulated data. In modeling using these
nonlinear learning machines, accurate training data generation is the
major constituent of the total model development time as it needs
both CPU and human time. Recently, there is a new trend in the
Electromagnetic (EM)-ANN area for searching the techniques using
reduced number of accurate training data, thus resulting in lessened
CPU and human time together with faster model development. The
pioneering techniques for reducing the need for accurate traning data
can be given as follows: Neural networks with knowledge such as
the knowledge-based neural networks (KBNN) [7], difference method
(DM) [8], prior-knowledge input (PKI) network [9] and space mapped
neural networks (SMNN) [10–13]. Furhermore an efficient knowledge-
based automatic model generation (KAMG) technique is proposed [14]
combining automatic model generation, knowledge neural networks,
and space mapping, where the two data generators —coarse and fine
generators— are simultaneously employed for the first time.

In this work, for the first time, we proposed a knowledge-based
SVM method and applied it to synthesis of transmission lines. Here,
our motivation is to obtain a synthesis model as fast as the coarse
models and at the same time as accurate as the fine models. Thus, we
choose the SVM method to utilize its improved features, especially its
working principle based on the small sample statistical learning theory,
in lessening the need for the accurate training and validation data
together with the human time. We have demonstrated our knowledge-
based SVM method by a typical worked example, depending on the
analysis process. In the worked example, the coarse and fine SVM
synthesis models are generated using the coarse and fine generators,
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respectively. Since coarse data generators are approximate and fast
(e.g., two and one-half dimensional EM simulators), the coarse SVM
model is generated by the extensive use of the coarse data, but much
less fine data are used to match accurately this coarse SVM model
to the fine generator. Finally, SVR is applied to the resulted fine
synthesis data again for the accurate synthesis formulation. Moreover,
performance of the SVM is compared with that of the ANN.

The paper is organized as follows: The generation of the support
vector expansion of given data takes place in the next section. Third
section gives general definitions about the knowledge-based support
vector synthesis of RF/Microwave transmission lines. The fourth
section is devoted to the worked example. The conclusions finally end
the paper.

2. SUPPORT VECTOR REGRESSION MACHINES

Given a training dataset (xi, yi), i = 1, 2, . . . , � where xi ∈ Rn, yi ∈ R
and � is the size of training data, SVR tries to find the mapping
function f(x) between the input variable vector x and the desired
output variable y. In formula this read as:

f(x) = wT · φ(x) + b (1a)

where xT = (x1, . . . , xn) ⇒ φT (x) = (φ1(x), . . . , φN (x)) and b ∈ R.
This step is equivalent to mapping the input space x into a new

space, F = {φ(x)/x ∈ Xn}. Thus, f(x) is a nonlinear function in the
x-input space and linear function in the F -feature space. Thus, we
will build a nonlinear machine in two steps: First, a fixed nonlinear
mapping vector ϕ(x) transforms the data into a feature space F , and
then the linear machine built in this feature space is used to perform
regression on the data. In this manner, we will refer to the quantities
w and b in (1a) as the weight vector and bias where w is:

wT = (w1, w2, . . . , wN ) (1b)

Traditional regression method finds the regression function f(x) by
determination of w and b using the rule of empirical risk minimization
principle:

Remp[f ] =
1
�

�∑

i=1

L(xi, yi, f) (2)

where L(xi, yi, f) represents an error (loss) function. One of the
familiar loss functions is ε-insensitive loss function developed by
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Vapnik [4]:

L(f(xi) − yi) = |y − f(x)|ε = max |0, |y − f(x)| − ε| (3)

However, the actual risk minimization cannot be realized only with the
empirical risk minimization [2]. A typical example is the over-fitting of
ANN. By the SRM principle employed by the SVR, the generalization
accuracy is optimized over the empirical error and the flatness of the
regression function which is guaranteed on a small w:

RSRM (f, w) =
1
2
‖w‖2 + CRemp[f ] (4a)

where 1
2 ‖w‖2 is the term characterizing the modeling complexity and

C is a regularization parameter which determines the trade off between
model complexity and empirical loss function. Substituting (2),
(3) into (4a) and introducing the slack variables ξi, ξ∗i , Eq. (4a)
is transformed into the following soft margin primal optimization
problem:

Minimize:
1
2
‖w‖2 + C

�∑

i=1

(ξi + ξ∗i ) (4b)

subject to:

(< w · φ(xi) > +b) − yi ≤ ε + ξi (5a)
yi − (< w · φ(xi) > +b) ≤ ε + ξ∗i (5b)
ξi ≥ 0, ξ∗i ≥ 0, ε ≥ 0, i = 1, 2, . . . , � (5c)

Combining the objective function given in (4b) with the constraints
in (5), we have the corresponding Lagrangian function. By applying
saddle point conditions with respect to the primal variables wi, b, ξi, ξ∗i
leads to the optimal regressor (i.e., optimal set of the weighting values),
given by

w =
�∑

i=1

(α∗
i − αi)φ(xi) (6)

where αi, α∗
i are positive Lagrangian multipliers obtained by

maximization of the following dual space objective function [2]:

W (α, α∗) = −ε

�∑

i=1

(αi + α∗
i ) +

�∑

i=1

yi(αi − α∗
i )

−1
2

�∑

i, j=1

(α∗
i − αi)(αj − α∗

j) < φ(xi)φ(xj) > (7)
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subject to:

0 ≤ αi ≤ C, 0 ≤ α∗
i ≤ C, i = 1, . . . , n,

�∑

i=1

αi =
�∑

i=1

α∗
i (8)

The corresponding Karush-Kuhn-Tucker complementary conditions
are:

αi(< wφ(xi) > +b − yi − ε − ξi) = 0 (9a)
α∗

i (yi− < wφ(xi) > +b − ε − ξ∗i ) = 0 (9b)
ξi · ξ∗i = 0 (9c)
αi · α∗

i = 0 (9d)
(αi − C) · ξi = 0 (9e)
(α∗

i − C) · ξ∗i = 0, i = 1, 2, . . . , � (9f)

From (9a) and (9b) of the Karush-Kuhn-Tucker conditions, it follows
that for only the samples satisfying |f(xi) − yi| ≥ ε, the Lagrangian
multipliers may be nonzero, and for the samples of |f(xi) − yi| < ε,
the Lagrangian multipliers αi, α∗

i vanish. Since the products of αi

with α∗
i and ξi with ξ∗i according to (9c) and (9d) are zero, at least one

term in the couples of (αi, α∗
i ); (ξi, ξ∗i ) is zero. Therefore, we have a

sparse expansion of w in terms of input variable vector x; thus we do
not need all data to describe w. The samples (xi, yi) that come with
nonvanishing coefficients are called Support Vectors (SVs). The idea of
representing the solution by means of a small subset of training points
has also enormous computational advantages. This reduced number
of nonzero parameters together with the guaranteed global minimum
gains superiority to SVM over the alternative methods. A detailed
mathematical background together with the literature can be found
in [2].

Thus, substituting the calculated nonzero Lagrangian multiplier
(αis) into (6) and then into (1a), the mapping function f(x) between
the input variable space and the desired output variable can be
expressed in terms of the SVs as follows:

f(x) =
ns∑

i=1

αiyi < φ(xi)φ(x) > +b (10a)

where b can be found making use of the primal constraints in (9a),
(9b) and ns is the number of SVs. The inner product < φ(xi)φ(x)>
in the feature space is called kernel function K, which can be given for
all x, z, X as:

K(x, z) = 〈φ(x)φ(z)〉 (10b)
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where φ is a mapping from X to an inner product feature space F .
Substituting (10b) into (10a), we have the SV expansion of f(x) in
terms of the kernels as:

f(x) =
ns∑

i=1

αiyiK(xi, x) + b (10c)

In the next section, the continuous domain SV expansion of the
microstrip transmission line geometry will be given in terms of
the required characteristic impedance Z0 and dielectric material εr

provided as accurate as that of their fine models.

3. A KNOWLEDGE-BASED SUPPORT VECTOR
SYNTHESIS OF RF/MICROWAVE TRANSMISSION
LINES

The proposed knowledge-based SVM synthesis method is given as block
diagram in Fig. 1, which is demonstrated by the typical example of
commonly used MIC line. In the worked example, SV expansion for
the synthesis of the microstrip line will be obtained employing its coarse
model. Then this coarse SVM model will be matched to its fine model
using an EM simulator.

Coarse Data 
Generator

Coarse  
Analysis 
Database 
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Process 

Coarse 
Synthesis 
Database 

SVRM
Model

Fine SV Regression  
Synthesis Function 

Coarse 
Synthesis 

SVs 

Fine  
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SVRM 
Model

Synthesis Definition Transmission  
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Figure 1. Knowledge-based SVRM approach applied to the synthesis
of transmission lines.

It should also be noted that SVM performs a selection onto the
training data to obtain much less data (SVs) to represent the whole
data in the regression. These SVs can also be used in training another
type of learning machine to obtain an efficient regression on the whole
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(a) (b)

Figure 2. (a) Microstrip line (M); (b) its transmission line
equivalence (T).

data. Similarly, in this work only SVs are taken into account to match
the coarse SVRM model to the fine generator; thus a large amount of
reduction in data and computational time is obtained.

4. WORKED EXAMPLE

4.1. Definition of the Problem

A microstrip transmission line given in Fig. 2(a) can be characterized
in M-space defined by M = {G, ε} ∈ R5 where G and ε are the
geometry and permeability vectors, respectively defined as:

Gt = [W, H, T ], εt = [εr, εy] (11)

which are the width of the strip, height of the dielectric substrate,
and strip thickness respectively, and εr, εy are the dielectric constants.
Similarly, Z0 and εeff are the characteristic impedance and effective
dielectric parameters of the equivalent transmission line (Fig. 2(b))
and can be represented in a T-space:

T = {Z0, εeff } ∈ R2 (12)

So analysis of the microstrip lines can be achieved by mapping A:

A : M(R5) → T(R2) (13)

Similarly, synthesis of the microstrip line can be defined by mapping
S:

S : T(R2) → M(R5) (14)



72 Tokan and Güneş

4.2. Error Analysis for the Black-box Models

To evaluate the quality of the fit to target data and to make comparison
between the SVRM and neural models, the following error terms are
found to be convenient as in [4]:

AccuracyX = 1 −

n∑

k=1

∣∣Xktarget − Xkpredicted

∣∣

n∑

k=1

Xktarget

(15)

where Xkpredicted
is the kth predicted value for the kth target value

Xktarget , n is the total number of data.

4.3. Knowledge-based Support Vector Synthesis of the
Microstrip Line

Approach for knowledge-based SVRM synthesis is given in Fig. 1,
where in the first stage, the coarse data generator provides the coarse
analysis data depending on the given transmission line geometry
and dielectric permittivity parameters. In this work, we applied
this approach to the microstrip lines with the empirical analysis
formulas [15] used as the coarse data generator. The employed
transmission line parameter range is given in Table 1. Thus 1290 data
are found to be sufficient to analyze the microstrip lines within the
given parameter range. Then the coarse synthesis data is generated
by reversing the coarse analysis data subject to the definition of
the synthesis process. In our work, this corresponds to determining
width, W on a chosen dielectric substrate (H, εr) for the required
characteristic impedance, Z0. These coarse synthesis data are inputted
to the SVRM model to obtain the coarse synthesis SVs. Accuracy of

Table 1. Microstrip line parameter range.

Variable
Training and test data

Min Max
H (mm) 0.1 10

εr 2 13
Z0 (Ω) 11 200

W (mm) 0.1 10
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Figure 3. Scatter plots of the EM simulated and SVRMfine predicted
W for the (a) training data; (b) test data.

this SVRMcoarse (trained with coarse data) model is given depending
on ε tolerance-parameter in Table 2, where ε = 0.25 and 151 SVs with
the accuracy of % 99.10 are assumed to be sufficient to be input to the
fine data generator.

Attempts to develop microstrip synthesis models with 3-D EM
accuracy using fine data from a 3-D EM Simulator alone have proven
to be computationally prohibitive, as each 3-D EM simulation needs
a lot of CPU time. This led to a need for examining possibilities
of using inexpensive coarse data together with fine data for efficient
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Table 2. Parameter selection for the SVRMcoarse model.

Number of SVs Accuracy (%) 
0.1 361 99.49 
0.15 264 99.28 
0.2 195 99.29 

0.25* 151 99.10 
0.3 113 98.94 

*

ε

ε=0.25 is used in the worked example.

Table 3. Accuracies for the synthesis SVRMfine model of the
microstrip line.

ε = 0.01 Accuracy %
Training 99.6859
Testing 98.9155

model development. Thus in the proposed method, fine synthesis SVs
are generated by applying only the coarse synthesis SVs to the 3-D EM
Simulator instead of the whole coarse synthesis data. Consequently,
CPU time for data generation is significantly reduced proportionally
with the reduced data, as investigated in the work [14]. Since fine
data generation time is the major constituent of the total model
development time, it can be concluded that model development using
the proposed knowledge-based SVRM is much faster than the existing
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Figure 4. SVRMfine model compared with EM simulator and the
coarse model for the microstrip line onto the dielectric materials:
PTFE\microfiberglass with εr = 2.26 and mica with εr = 6 for
substrate thickness (a) H = 2mm; (b) H = 5 mm.

modeling approaches.
Finally, fine SV expansion is obtained inputting these fine

synthesis SVs to the SVRM model box. Thus the resulted accuracies
are given for training and testing in Table 3. Furthermore the related
scatter plots are presented in Fig. 3. It can be seen from the Table 3
and Fig. 3 that % 98.9155 of accuracy is achieved with the % 11.7
(151/1290) of the original data. This reduction is also valid for
CPU time of data generation. Besides, data reduction also results
in reduction in training time of the model. Figs. 4(a), (b) give plots
of functions W (Z0, εr, H) resulted from the models of the SVRMfine

(trained with fine data), fine and coarse data generators.

5. CONCLUSIONS

We have proposed a robust knowledge-based SVM method and applied
it to generation of synthesis model for microwave applications. The aim
of this work is to obtain a synthesis model as fast as the coarse models
and at the same time as accurate as the fine models. The technique has
integrated advanced concepts of SVM and knowledge-based modeling
into a powerful and systematic framework. Motivated by the working
principle based on the small sample statistical learning theory of SVM,
the knowledge-based SVM method simultaneously exploits coarse and



76 Tokan and Güneş

fine data generators for efficient model development. The advantages of
the knowledge-based SVM method are demonstrated through practical
example of microstrip line to be used in conventional monolithic or
hybrid MICs. For a specified accuracy, the proposed method uses the
fewest fine data compared to conventional modeling methodologies.
Reduced fine training data result in significantly reduced CPU time
for data generation and also faster model development process.
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