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Abstract—The coupled mode theory (CMT) is used to analyze
uniform Fiber Bragg gratings. The multi-mode CMT is expressed
as the first-order vector ordinary differential equations (ODEs) with
coefficients depending on the propagation distance. We show in this
paper that by changing variables, the original couple mode equations
(CMEs) can be re-casted as constant coefficient ODEs. The eigenvalue
and eigenvector technique (EVVT), the analytic method for solving
constant coefficient ODEs, is then applied to solve the coupled mode
equations. Furthermore, we also investigate the application of Runge-
Kutta method (RKM) to the calculation of the global transfer-function
matrix for CMEs. We compare the transmission and the reflection
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spectra obtained by EVVT with those by RKM. Both results agree
within machine accuracy. Numerical simulations conclude that solving
constant coefficient ODEs improves the speed and accuracy of solutions
to the original CMEs.

1. INTRODUCTION

Fiber Bragg gratings (FBGs) can couple light from the guided
fundamental mode to the counter-propagating guided and cladding
modes, and cause a set of loss dips in the transmission spectrum and
corresponding peaks in the reflection spectrum [1]. The intensities of
these loss peaks are determined by the UV induced index modulation
of the core, the length of FBGs, and the overlap between fundamental
and cladding modes. Since fiber Bragg gratings have advantages of
all-fiber geometry, low insertion loss and low cost etc., they have been
used for spectral filtering, dispersion compensation, wavelength tuning,
and sensing in optical communication and optoelectronics [1–5].

The characteristics of FBGs have been analyzed by numerous pa-
pers [1–3, 6 7]. Erdogan presented the optical properties of fiber Bragg
gratings, such as the reflection and dispersion characteristics [1, 2].
Singh et al. developed a simple matrix method to solve a standard
Bragg fiber and an unconventional Bragg waveguide [6]. Recently, we
presented the numerical approach of the coupled mode theory (CMT)
for solving uniform FBGs from a new prospective [7]. The paper out-
lines the detail of the work including a new derivation of CMT equation
and many new numerical results.

Normally, the conventional full wave theory such as the modal
analysis method and finite difference frequency domain (FD-FD)
methods [8, 9] should be used to analyze the FBG problem. However,
due to the tremendous ratio between the total length of the FBG
and the wavelength, the straight-forward full wave theory needs lots
of storage and computational resources to be viable and practical.
Instead, the CMT is widely used to analyze Bragg grating problems
when the frequency of interest is near the resonance [1].

The CMT can be expressed as a system of ordinary differential
equations (ODEs), which is called the coupled mode equations
(CMEs). Note that the CMT is accurate when the periodic
perturbation is weak. Since the index variation is very small in
FBGs, the CMT is suitable for solving uniform FBGs [1, 2, 7]. By
solving CMEs, the transmission and reflection properties of fiber Bragg
gratings can be obtained.

To obtain accurate results, the numerical methods of solving
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the coupled mode equations play an important role in the analysis.
Because the coefficients of CMEs are a function of a propagation
distance, CMEs should be solved by numerical methods. Runge-
Kutta method is the most commonly used numerical method to
solve the system of ordinary differential equations with initial
conditions. Forslund and He used RKM to solve the scattering
problems for laterally periodic inhomogeneous gratings [10]. The
reflection coefficient of a linear dielectric slab embedded between
two homogeneous dielectric media is obtained by Hashish by using
RKM [11]. Watanabe presented the formulation for arbitrary profiled
gratings with anisotropy lossy materials. Outside the grating layer,
the transmission matrices of electromagnetic fields is calculated by
RKM [12].

As described above, the coupled mode equations are written
as a system of first-order ordinary differential equations (ODEs)
with the coefficients dependent on propagation distance z-dependent,
hereafter named z-dependent coefficient ODEs. On the other hand,
we show by changing variables of CMEs, the system of z-dependent
coefficient ODEs of CMT can be expressed as a system of ODEs with
constant coefficients. It is noted that a first-order constant coefficient
ODEs has a rigorous analytic solution using eigenvalue-eigenvector
technique (EVVT). By evaluating the eigenvalues and the eigenvectors
of the coefficient matrix of the ODEs, the solution of the ODEs can
be obtained. Watanabe and Kuto used EVVT to solve the wave
propagation in optical waveguides [13].

In this paper, the derivation of constant coefficient ODEs from
z-dependent ODE is presented. The EVVT as well as RKM is applied
to solve CMT for analyzing uniform FBGs. The formulation of
transmission and the reflection coefficients of uniform FBGs are also
described. The accuracy of EVVT and RKM are compared in this
paper.

2. THE COUPLED MODE THEORY

Fiber gratings are fabricated by exposing an optical fiber to a pattern
of ultraviolet intensity. Assume that a time harmonic wave propagates
in the z direction as exp(iβz− iωt), where β is a propagation constant,
and ω is the angular frequency. For simplicity, the refractive index of
the fiber grating is described as follows [1]

n (r, z) =

{
n1 = n1σdc + n1σdcm cos (2πz/Λ) r ≤ r1

n2 r1 ≤ r ≤ r2

n3 r2 ≤ r
(1)
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where Λ is the grating period, r1 and r2 are the radius of the core and
cladding, respectively, and n1, n2 and n3 are the refractive indices of
the core, cladding and the surrounding region, respectively. n1σdc is
the dc index change, n1σdcm cos (2πz/Λ) is the ac index change and m
is the fringe visibility of the index change. Since the grating is uniform,
σdc is a constant.

The magnitudes of electromagnetic waves for the ith mode in the
fiber can be expressed as

~U+
i (r, φ, z) = Ai(z) · ~Φi(r, φ) · exp (iβiz) (2a)

~U−
i (r, φ, z) = Bi(z) · ~Φi(r, φ) · exp (−iβiz) , (2b)

where ~U+
i (r, φ, z) and ~U−

i (r, φ, z) are the magnitudes of forward and
backward waves with Ai(z) and Bi(z), the corresponding amplitude
functions, ~Φi(r, φ), the two-dimensional 3-D vector field function,
and βi is the propagation constant of the ith mode. Note that
without gratings, the coupling between modes can not happen and the
amplitude function Ai and Bi remain to be constants. When gratings
are fabricated in the core of the fiber, the coupling occurs so that Ai(z)
and Bi(z) are functions of the propagation distance.

In the multi-mode coupled mode theory, we consider the
interactions between forward and backward mode amplitude functions
in an FBG fiber over a grating period dz = Λ. To the first-order
accuracy of dz, the “averaged” effect of mutual coupling among the
various waveguide modes can be written as a system of linear ordinary
equations below:

dA0

dz
= +iκ0A0+i

m

2
κ0B0 exp (−i2δ0z)+i

∑
ν

m

2
κvBv exp(−i2δvz) (3)

dB0

dz
= −iκ0B0−i

m

2
κ0A0 exp (+i2δ0z)−i

∑
ν

m

2
κvAv exp(+i2δvz) (4)

dAv

dz
= +i

m

2
κvB0 exp (−i2δvz) for ν = 1, 2, . . . , n (5)

dBv

dz
= −i

m

2
κvA0 exp (+i2δvz) for ν = 1, 2, . . . , n (6)

where A0(z) is the amplitude for the transverse core mode field
traveling to the +z direction, B0(z) is the amplitude for the transverse
core mode field traveling to the −z direction. Aν(z) and Bν(z) are
amplitudes for the νth cladding mode (v = 1, . . . , n). δ is a small-
detuning parameter, and κ is the coupling coefficient. The parameters
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δ0, δv, κ0 and κv are defined as follows:

δ0 =
1
2

(
2β0 − 2π

Λ

)
, (7)

δv =
1
2

(
β0 + βv − 2π

Λ

)
, (8)

κ0 =
ωε0n

2
1σdc

2

∫ 2π

0
dφ

∫ r1

0
rdr

(
|Eco

r |2 +
∣∣Eco

φ

∣∣2
)
, (9)

κv =
ωε0n

2
1σdc

2

∫ 2π

0
dφ

∫ r1

0
rdr

(
Ecl

r Eco∗
r + Ecl

φ Eco∗
φ

)
, (10)

where β0 is the propagation constant of the core mode, βv is the
propagation constant of the vth cladding mode, Er and Eφ are
electric fields of transverse components of vector function ~Φ(r, φ), in
Equations (2a) and (2b). Superscripts co and cl indicate the core
mode and the cladding mode. Derivation of Equations (3)–(10), are
covered in more detail in reference papers [1, 2, 7] and also in some
textbooks [14]. Equations (5) and (6) represent the counter-directional
coupling between the core mode and cladding modes. Since we assume
that only the core mode is incident into the FBGs, there are no powers
of cladding modes in the input end of FBGs. Therefore, the coupling
among cladding modes are extremely small and is neglected in the
coupled mode equations of Equations (5) and (6). In addition, the
co-directional coupling between the core mode and cladding modes are
also neglected due to the short period of the grating. For very long
period FBG, all co-directional coupling must be included. Ideally, δ0

should be zero or quite small so every backward reflection from each
grating structure will add up coherently.

The CMEs can be expressed as a matrix form:

d
⇀

Y

dz
=

d

dz

[
⇀

A
⇀

B

]
=

[
U11 U12

U21 U22

]
·
[

⇀

A
⇀

B

]
= U(z) · ⇀

Y (11)

where
⇀

A = [A0, . . . An]T and
⇀

B = [B0, . . . Bn]T are the amplitude
vectors propagating in the forward and backward directions,
respectively, and the elements of

⇀

A and
⇀

B are Av and Bv, v = 0, . . . , n

respectively. The amplitude vector ~Y includes
⇀

A and
⇀

B. The
sub matrices U11 has only one nonzero element iκ0, the first entry.
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U12,U21 are given below

U12 =
im

2
·




κ0e
−i2δ0z . . . κne−i2δnz

... 0 0
κne−i2δnz 0 0




U21 =
−im

2
·




κ0e
i2δ0z . . . κnei2δnz

... 0 0
κnei2δnz 0 0


 .

(12)

Note that due to the structure equivalence between the forward and
backward waves, U21 = −U12, U22 = −U11 when z is replaced by
−z. The fact that these sub-matrices are functions of propagation
distance z makes (11) a system of first-order ODEs with z-dependent
coefficients.

Next we wish to transform Equation (11) into a system of ODEs
with constant coefficients via the change of variables. For an arbitrary
general matrix function U (z), this is not always possible because we
can only adjust 2N terms in

⇀

A and
⇀

B to remove z-dependence of all
4N2 entries in U. Fortunately, by neglecting bi-directional coupling
among the cladding modes and co-directional coupling between the
core mode and cladding modes, most entries in U (z) are zeros.
Considering the special symmetry of sub-matrices of U, we make
the following change of variables and introduce new sets of amplitude
functions {av} and {bv} for the vth mode as,

av = Av exp(i∆νz)
bv = Bv exp(−i∆vz),

v = 0, 1, 2, . . . , n (13)

To determine ∆ν , we substitute (13) into (11) to annihilate all non-
zero coefficients in the exponential terms of the new U matrix. The
detailed derivation is presented in the Appendix A. Using the following
perturbed propagation constants:

∆v = 2δv − δ0, v = 0, 1, 2, . . . , n (14)

we can obtain a constant coefficient CMEs for av(z) and bv(z) below:

d
⇀
y

dz
=

d

dz

[
⇀
a
⇀

b

]
=

[
V11 V12

V21 V22

] [
⇀
a
⇀

b

]
= V · ⇀

y, (15)
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where ⇀
a = [a0, . . . an]T and

⇀

b = [b0, . . . bn]T and

V11 =




i(κ0 + ∆0) 0 . . . 0
0 i∆1 . . . 0
...

...
. . .

...
0 0 . . . i∆n


 ,

V12 = i
m

2




κ0 κ1 . . . κn

κ1 0 . . . 0
...

...
. . .

...
κn 0 . . . 0




V21 = −V12, V22 = −V11.

(16)

The amplitude vector ⇀
y includes forward propagating vector ⇀

a and
backward propagating vector

⇀

b . Since all elements of V in (16) are
constants, the analytical solution of the coupled mode Equation (15)
can be obtained by the eigenvalue eigenvector technique. To our
knowledge Equations (15), (16) have never been published in the
literature. The complete mathematical description of CMT requires
the following boundary conditions to be satisfied

⇀
a0

∆= ⇀
a(0) = [1 0 . . . 0]T ,

⇀

bL
∆=

⇀

b (L) = [1 0 . . . 0]T . (17)

The reflection and transmission coefficient vectors are given by

~r0 = [r0 r1 . . . rn]T =
⇀

b (0), ~tL = [t0 t1 . . . tn]T = ⇀
a(L) (18)

3. EIGENVALUE-EIGENVECTOR TECHNIQUE

The constant coefficient ODEs can be analytically solved by eigenvalue-
eigenvector technique (EVVT). Using EVVT, the rigorous solution
of (15) can be expressed as

⇀
y(z) =

2n∑

i=1

ci · ~pi · eλiz

=




p11e
λ1z . . . p1,2neλ2nz

...
. . .

...
p2n,1e

λ1z . . . p2n,2neλ2nz







c1

c2
...

c2n


 = Q(z) · ~c

(19)

where λi, ~pi = [ p1,i, . . . p2n,i ]T is the ith eigenvalue and its
corresponding eigenvector of matrix V in (15). ~c is the unknown
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eigenfunction coefficient vector which is determined by the boundary
conditions. From (19), the transfer-function matrix G that connects
~y(0) to ~y(L) is given by

⇀
y(L) = G · ⇀

y(0), G = Q(L) ·Q(0)−1 (20)

⇀
y(L) =

[
~aL
~bL

]
,

⇀
y(0) =

[
~a0
~b0

]
. (21)

By definition, reflection and transmission vectors (~r0 and ~tL) are ~a0

and ~bL in (21). We obtain
[

~tL
~bL

]
=

[
G11 G12

G21 G22

]
·
[

~a0

~r0

]
, G =

[
G11 G12

G21 G22

]
. (22)

By rearranging (22), the equation and solutions of ~r0 and ~tL can be
written as

~r0 = G−1
22 ·

(
~bL −G21 · ~a0

)
,

~tL =
(
G11 −G12 ·G−1

22 ·G21

) · ~a0 + G12 ·G−1
22 ·~bL.

(23)

4. RUNGE-KUTTA METHOD

Runge-Kutta method (RKM) is one of the most commonly used
numerical methods to solve an initial value problem (IVP) described by
a system of ordinary differential equations. RKM is the ideal method
for solving system of ODEs with smoothly varying coefficients.

At the first application of RKM to advance the vector functions
~Y (0) in (11) to the next step ~Y (dz), we find that part of the initial
conditions are missing. It is because we do not know what ~r0 is. To
make RKM work, we must update ~Y (z) vectors due to all possible
initial conditions. In other words, we need to compute the transfer-
function matrix that will take us from any arbitrary initial vector

⇀

Y (0)
to

⇀

Y (dz) and eventually to
⇀

Y (L). We begin RKM process by first
dividing the grating region 0 < z < L into m equally spaced sections,
each with a length h = L/m. The centered position of the ith section
is zi = (i− 1/2) · h for i = 1, . . . ,m. When we apply the fourth-order
RKM method, the local transfer-function Ri is written as

Ri = I + (K1i + 2K2i + 2K3i + K4i) /6, (24)
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where matrices K1i, K2i, K3i and K4i are intermediate Runge-Kutta
calculations given by

K1i = h ·U(z = i · h− h)
K2i = h ·U(z = i · h− h/2) · (I + K1i/2)
K3i = h ·U(z = i · h− h/2) · (I + K2i/2)
K4i = h ·U(z = i · h) · (I + K3i/2).

(25)

Each Ri connects the two amplitude vectors at the two ends of the
section as

⇀

Y (ih) = Ri ·
⇀

Y ((i− 1)h) . (26)
Like Equation (20), these transfer-function matrices Ri, i = 1, . . . , m,
help to connect the amplitude vector ~Y at z = L with ~Y at z = 0 in
the following way:

~Y (L) = U (mh) = Rm · ~Y ((m− 1)h)

= Rm ·Rm−1 . . .R1 · ~Y (0) = GRKM1 · ~Y (0) . (27)

Matrix GRKM1 is the global transfer matrix computed by Runge-Kutta
method for solving z-dependent coefficient CMEs (11).

The RKM is also used to solve the constant coefficient CMEs (15).
Since V in (16) is a constant matrix for all positions zi of the gratings,
all the local transfer-function matrix are the same. The resulting local
transfer-function matrix R is written as

R = I + (K1 + 2K2 + 2K3 + K4)/6, (28)

where K1, . . .K4 are like those in (25) except that U is replaced by V.
We have from (27)

⇀
y(L) = Rm⇀

y(0) = GRKM2
⇀
y(0). (29)

GRKM2 is the global transfer-function matrix computed by Runge-
Kutta method for solving constant coefficient CMEs (15). Once GRKM

matrices are computed, we then apply Equations (23a) and (23b) to
compute transmission and reflection amplitude vectors. Thus, the
solutions to CMEs can be obtained by using RKM.

The transmission and reflection efficiencies of the core mode can
be expressed as

T =
|A0(L)|2
|A0(0)|2 = |A0(L)|2 , R =

|B0(0)|2
|A0(0)|2 = |B0(0)|2 . (30)

where A0(L) and B0(0) are the first element of
⇀

A(L) and
⇀

B(0),
respectively.
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Figure 1. (a) The transmission spectrum of uniform FBGs using
EVVT and RKM. The step number of RKM is 1000. (b) The reflection
spectrum of uniform FBGs using EVVT and RKM. The step number
of RKM is 1000.

5. RESULTS AND DISCUSSION

Assume that an FBG is made of a step index single-mode fiber.
The radius of core and cladding of the fiber are r1 = 2.5µm and
r2 = 62.5µm, respectively. The refractive indices of the core, cladding
and surrounding region are n1 = 1.458, n2 = 1.45 and n3 = 1,
respectively. The grating period is Λ = 0.53µm, the induced-index
change n1σdc is 2.8×10−3, and the total length of the FBG is L = 4mm.
The parameters of the FBGs used in our calculation are from [2]. We
consider a total of twenty-five modes in all of our numerical work.

Figures 1(a) and 1(b) show the transmission spectrum and
reflection spectrum, respectively, by using RKM1 and EVVT. The solid
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Figure 2. (a) The difference of the transmission efficiencies between
the EVVT and RKM1. (b) The difference of the reflection efficiencies
between the EVVT and RKM1.

lines in Figs. 1(a) and 1(b) are the results of Equation (15) by EVVT,
while the dash line indicates the solutions of Equation (11) by RKM1.
The grating length is divided by 1000 points in our calculation.

As shown in Fig. 1, the transmission and the reflection spectrum
in the resonant region of first Bragg are symmetric, where the 3 dB
resonant region is from 1539.98 nm to 1541.70 nm, and the 3 dB
bandwidth is 1.72 nm. The central wavelength of the resonance is
1540.84 nm. The sidelobe suppressions on two sides of the resonance
are about 11% corresponding to the wavelengths of 1539.96 nm and
1541.72 nm. Note that the cladding mode coupling can be found in
Fig. 1. At the cladding mode coupling region, the core mode transfers
the power to contra-propagating cladding modes, but not the core
mode. Therefore, both the transmitted and reflected powers of the
core mode are decreased. In Fig. 1, the cladding mode coupling occurs
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at the wavelength less than 1539 nm, where the transmission efficiencies
decrease to 10%, and the reflection efficiencies remain 10%.

The differences of the transmission efficiency and the reflection
efficiency between RKM1 and EVVT in Fig. 2 are shown in Figs. 2(a)
and 2(b), respectively. As shown in Fig. 2, in the resonant region
the differences of transmissivity and reflectivity for the two methods
are relatively small (less than 10−9) compared with those out of the
resonant region. It is because at resonance, the CME satisfies the
phase-matching condition, i.e., the small-detuning parameter of the
core mode δ0 in (7) is approaching to zero. The coefficients of A0 and
B0 in (11) are near constants. Therefore, A0 and B0 can be calculated
by numerical methods with small numerical error. On the other hand,
off the resonant region, the maximum differences between EVVT and
RKM1 for both the transmission and reflection efficiencies occur at
the same wavelength of 1541.69 nm (in the right edge of the resonant
region in Fig. 2), and is about 3.4× 10−6. Note that off resonance, the
coefficients of A0 and B0 in (11) are a function of the exponential form
with a variable of a propagation distance. The numerical error of the
z-dependent coefficient ODEs oscillates with respect to the wavelength.

Although the EVVT is a rigorous method to solve constant
coefficient ODEs, the error of EVVT is caused by the numerical error
of eigenvalues and eigenvectors. Since eigenvalues and eigenvectors
can be correctly obtained by several numerical methods or software,
the EVVT can provide more accurate results than RKM. Therefore,
we define the error as the differences of calculated results between
RKM and EVVT. Figs. 3(a) and 3(b) show the error of transmission
and reflectivity, respectively, as a function of a step number of RKM
at the wavelength of 1541.69 nm. The wavelength of 1541.69 nm is
chosen because it is the maximum error in Figs. 2(a) and 2(b). Both
errors of RKM1 and RKM2 are shown in Figs. 3(a) and 3(b), where
RKM1 indicates solutions of z-dependent coefficient ODEs (11) solved
by RKM, and RKM2 denotes solutions of constant coefficient ODEs
(15) solved by RKM. As shown in Figs. 3(a) and 3(b), the calculated
results by RKM1 and RKM2 approach the results calculated by EVVT
with increased step numbers.

Figure 3(a) shows that RKM1 presents the same convergent rate
with increased step numbers. When the step number is 1000, the error
of RKM1 is 3.4 × 10−6, while the error is 3.4 × 10−10 for 10000 steps
of RKM1. The result demonstrates that if the step size h is decreased
by 10−1, the local truncation error decreases to 10−4 times. It means
that the rate of convergence for RKM1, or the local truncation error
of RKM1, is O(h−4), where O(h−4) denotes the order of the local
truncation error of h−4 (please see Appendix B) [15]. Our calculated
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Figure 3. (a) The error of transmissivity by RKM1 and RKM2 as a
function of step number at wavelength of 1541.69 nm. (b) The error
of reflectivity by RKM1 and RKM2 as a function of step number at
wavelength of 1541.69 nm.

truncation error of O(h−4) is the same as theoretical results of the
fourth-order RKM. For RKM2 in Fig. 3(a), we can find that two
convergent rates correspond to the step number. When the step
number is less than 500, the convergent rate of RKM2 is O(h−7).
When the step number is greater than 500, the two curves of RKM1
and RKM2 are almost parallel. It means that the two slopes represent
the same truncation errors of O(h−4). Therefore, even though the error
of RKM2 is lager than that of RKM1 when the step number is 100,
RKM2 is more accurate at the step number of 10000. The errors of
RKM1 and RKM2 at the step number of 10000 are 3.4 × 10−10 and
3.2× 10−11, respectively.

Similar to Fig. 3(a), the local truncation error (or the convergent
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rate) of RKM1 for reflectivity is O(h−4) in Fig. 3(b) and is the same
as that for transmissivity. Two rates of the convergence for RKM2 are
found in Fig. 3(b) as well. When the step number is less than 500, the
convergent rate of RKM2 is O(h−7) while it is O(h−8) when the step
number is greater than 500. Note that the convergent rate of RKM2 for
the reflectivity is faster than that for the transmission efficiency. The
error of RKM2 in Fig. 3(b) is 10−4 times of that of RKM1 when the
step number is 10000, where the errors of the 10000-step for RKM1
and RKM2 are 3.4 × 10−10 and 6.7 × 10−14, respectively. Compare
Fig. 3(a) with Fig. 3(b). The errors for RKM1 are similar. But RKM2
can obtain more accurate reflectivity than tranmsissivity. Also, at the
step number of 200, both RKM1 and RKM2 have similar truncation
errors of reflection and transmission.

6. CONCLUSIONS

The coupled mode theory applied to the analysis of uniform FBGs is
reinvestigated with the fundamental guided mode and a total of 24
cladding modes. By changing variables and taking the advantage that
most entries in the coefficient matrix are zero, we derive the system of
constant coefficient ODEs from the system of z-dependent coefficient
ODEs. The constant coefficient ODEs is solved by the standard
eigenvalue eigenvector technique and we obtained transmission and
reflection coefficient vectors. We also show how the simple but
effective Runge-Kutta method can be applied to compute the global
transfer-function matrix described by the z-dependent coefficient
ODEs (labeled as RKM1). Since constant coefficient ODEs can be
solved “exactly” by the rigorous EVVT, their results are used as
references. RKM, on the other hand, has the advantage of being
simpler than the EVVT.

For comparison, using the constant coefficient ODEs, the
transmission and reflection amplitude spectra of uniform FBGs were
computed by both EVVT and RKM (labeled as RKM2). Both RKM1
and RKM2 results approach those by EVVT when we increased the
number of steps m. The calculated results show that RKM2 is more
accurate than RKM1. In some cases, using equal number of steps, the
error of RKM1 is 104 times of that of RKM2. In addition, we observed
an O(h−7) convergent rate in RKM2 which is much better than the
expected O(h−4) convergent rate from RKM1.
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APPENDIX A. DETAIL DERIVATION OF (15) AND (16)

We start with the definitions:

⇀
a(z) = ei∆z ~A(z), ~b(z) = e−i∆z

⇀

B(z),

~A(z) = e−i∆z⇀
a,

⇀

B(z) = ei∆z~b(z).
(A1)

where the diagonal matrix ∆ is made of entries ∆0, . . . , ∆n. Taking
derivative of (A1), we get

d
⇀
a

dz
=

d

dz

(
ei∆z ~A

)
= i∆⇀

a + ei∆z d ~A

dz
,

d~b

dz
=

d

dz

(
e−i∆z

⇀

B
)

= −i∆~b + e−i∆z d
⇀

B

dz
.

(A2)

Substituting (A1) and (11) into (A2), we get

d
⇀
a

dz
= i∆⇀

a+ei∆zU11e
−i∆z⇀

a+ei∆zU12e
i∆z~b =V11

⇀
a+V12

~b,

d~b

dz
= −i∆~b + e−i∆zU21e

−i∆z⇀
a−e−i∆zU22e

i∆z~b=V21
⇀
a+V22

~b.

(A3)

V12 = ei∆zU12e
i∆z = i

m

2
·




κ0e
iz(2∆0−δ0) κ1e

iz(∆0+∆1−2δ1) . . . κneiz(∆0+∆n−2δn)

κ1e
iz(∆0+∆1−2δ1) 0 . . . 0

...
...

. . .
...

κneiz(∆0+∆n−2δn) 0 . . . 0


,

(A4)
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V21 = e−i∆zU21e
−i∆z = −i

m

2
·




κ0e
−iz(2∆0−δ0) κ1e

−iz(∆0+∆1−2δ1) . . . κne−iz(∆0+∆n−2δn)

κ1e
−iz(∆0+∆1−2δ1) 0 . . . 0

...
...

. . .
...

κne−iz(∆0+∆n−2δn) 0 . . . 0


.

(A5)

V12,V21 become constant matrices if eiz(∆0+∆m−2δm) = 1 for m =
0, 1, . . . , n. We arrive at the following equations:

∆m = 2δm − δ0 m = 0, 1, . . . , n (A6)

Finally, from (A3) we get, by inspection

V11 = ei∆zU11e
−i∆z = U11,

V22 = e−i∆zU22e
i∆z = U22.

(A7)

APPENDIX B. DEFINITION OF O(βn)

The definition of O(βn) refers from [15]. Suppose {βn}∞n=1 is a sequence
known to converge to zero, and {αn}∞n=1 converges to a number α. If
a positive constant K exists with

|αn − α| ≤ K|βn| for large n,

then {αn}∞n=1 converges to α with rate of convergence O(βn).
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