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Abstract—In this paper, the uniform scattered fields from a perfectly
conducting (PEC) half plane are studied with the extended theory of
the boundary diffraction wave. A new vector potential of the boundary
diffraction wave is found by considering the Fermat principle for the
PEC surfaces. This vector potential is applied to the Helmholtz-
Kirchhoff integral, and the theory of the boundary diffraction wave
is extended to the PEC surfaces. The extended theory of the boundary
diffraction wave is then applied to the scattering problem for the PEC
half plane. The total scattered fields are compared numerically with
the exact solution for the same problem. The numerical comparisons
given in the paper show that the solution of the extended theory of the
boundary diffraction wave is very close to the exact solution.

1. INTRODUCTION

The theory of boundary diffraction wave is taken into consideration to
be the refinement of Young’s ideas on the nature of diffraction [1].
The first formulation of the theory of boundary diffraction wave
(TBDW) was introduced by Maggi-Rubinowicz by considering the
Young’s ideas [2, 3]. They independently showed that Helmholtz-
Kirchhoff integral can be converted into a line integral representing
the edge diffracted fields. The general case of the Maggi-Rubinowics
formulation was expressed by Miyamoto and Wolf for various incident
fields [4, 5].

The theory of boundary diffraction wave is a widely used approach
for calculating the diffracted fields from aperture systems [6–9]. TBDW
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solutions are composed of the diffracted fields of the shadow region
because, in the theory, the aperture surface is taken into consideration
solely. Therefore, with this method, only transmitted fields can be
calculated, whereas the reflected fields cannot.

TBDW can be easily applied to various diffraction problems, but
it does not give satisfactory solutions for diffracted fields from PEC and
impedance surfaces, since the theory is solely based on opaque screen.
TBDW was studied by Otis and Lit [10] for the problem of diffracted
Gaussian laser beams from the edge of the half plane. The problem
of the diffraction from the opaque half plane was studied for normal
and oblique incidence with TBDW approach in [11, 12]. The potential
function of TBDW was obtained for the impedance surfaces by the
asymptotic reduction considering the modified theory of physical optics
(MTPO) in [13]. The uniform line integral representation for TBDW
was found by using the MTPO in [14]. The following studies have been
recently focused on the application of the TBDW [15, 16].

The advantage of the boundary diffraction wave theory is based
on the line integral reduction in the surface integrals. For the problems
with complex geometries, the evaluation of the surface integrals needs
high computation times [17]. However, it is well known that the surface
of the scatterer contributes to the geometrical optics waves, which
can be easily evaluated by taking into account the classical method
of geometrical optics. Thus, the line integral reduction of the surface
integrals enables one to directly evaluate the edge diffracted waves,
by integrating the reduced integrand along the edge contour, and as a
result, the computation time decreases drastically.

In this paper, the modified vector potential of TBDW is defined
by using a different approach other than methods available in the
literature [10–14]. Here, this vector potential is applied to the
Helmholtz-Kirchhoff integral, and TBDW is extended for PEC surfaces.
Verification of the extended method is performed by applying it to the
problem of diffraction from the PEC half plane. The total uniform
diffracted fields are obtained by this approach, and the total scattered
fields are compared numerically with the exact solution of the same
problem.

A time factor ejωt is assumed and suppressed throughout the
paper.

2. THE EXTENDED THEORY OF THE BOUNDARY
DIFFRACTION WAVE FOR PEC SURFACES

The field disturbance at any point P within a volume ν bounded by any
closed surface S according to Helmholtz-Kirchhoff integral is expressed
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as
U(P ) =

∫∫
©
S

~V (Q,P ) · ~ndS (1)

U(P ) is the magnetic or electric field, and it is the solution of
homogeneous Helmholtz equation. Here, ~n is the unit inward normal
vector and Q is the variable point on the surface S. Using the Stokes
theorem, Helmholtz-Kirchhoff integral can be split into two terms:

U(P ) = UB(P ) + UGO(P ). (2)

The first term represents the boundary diffraction wave from the
boundary Γ of the aperture surface (see Figure 1).
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Figure 1. Geometry of the boundary diffraction wave.

Then the expression can be given as

UB(P ) =
∫

Γ

~W (Q,P ) ·~ldl. (3)

~V (Q,P ) can be expressed as the curl of a vector potential ~W (Q,P ).
Therefore, the vector potential is symbolically given as

~W (Q, P ) =
1
4π

e−jkR

R

[
~eR × ∇Q

(−jk + ~eR · ∇Q)
U(Q)

]
(4)

by considering [4, 5]. Here, ~eR is the unit vector of the vector ~R, and
R denotes the distance between the observation point P and Q (see
Figure 1).
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The second term in Eq. (2) represents the contributions of
geometrical-optics (GO) fields from the special Qi points on the PEC
surface or aperture. These points are singularities relating to the vector
potential ~W (Q,P ). These discrete singular points, Q1, Q2, . . . Qn, are
surrounded by small circles with radii σi, and the boundaries of these
circles are called Γi (i = 1, 2, . . . n). Hence, UGO(P ) is symbolically
described as [4,5]

UGO(P ) =
∑

i

lim
σi→0

∫

Γi

~W (Qi, P ) ·~ldl (5)

where, ~l is the unit vector along the tangent of Γi, and dl is an element
of Γi.

The vector potential ~W (Q,P ) is not unique since rot grad ≡ 0,
but the vector potential’s arbitrariness does not affect the TBDW
integral [18]. According to the Fermat principle, diffraction is a local
phenomenon [19]. If the screen is not an opaque surface, U(Q) given in
Eq. (4) will be equal to the sum of the incident Ui(Q) and the reflected
Ur(Q) fields at the secondary source point Q. The second term
in Eq. (2) represents Geometrical Optics (GO) fields’ contributions.
These fields are related to singularities of the vector potential.

3. DIFFRACTION FROM THE PEC HALF PLANE

The diffraction geometry to be used in this paper is depicted in
Figure 2. In this figure, a homogeneous plane wave is illuminating
the PEC half plane. The homogeneous plane wave and the pseudo-
reflected wave can be given as

Ui(P ) = uie
−j~ki·~r (6)

and
Ur(P ) = ure

−j~kr·~r (7)

for observation point P . Here ~ki and ~kr are equal to k~ei and k~er,
respectively. ~r is the position vector of point P and can be given as

~r = (x~ex + y~ey + z~ez). (8)

The related unit vectors can be written as

~ei =− cosφ0~ex − sinφ0~ey

~er =− cosφ0~ex + sin φ0~ey
(9)
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Figure 2. Geometry of the diffraction from PEC half plane.

by considering the geometry in Figure 2. The incident (or transmitted)
field can be evaluated by using Eq. (6). By means of the variable change
of x = ρ cosφ, y = ρ sinφ in Eq. (8), one can obtain

Ui(P ) = uie
jkρ cos(φ−φ0) (10)

by utilizing Eqs. (8) and (9) in Eq. (6). Similarly, the reflected field
can be derived as

Ur(P ) = −uie
jkρ cos(φ+φ0) (11)

by utilizing Eqs. (8) and (9) in Eq. (7) for the PEC half plane problem.
The diffracted field from the PEC half plane can be evaluated by

the contribution of the first term in Eq. (2). In this study, firstly, the
vector potential concerning to the PEC half plane will be found. Since
the secondary source point Q is located at the origin, x′ and y′ is equal
to zero for this case. Gradient of U(Q) can be given as

∇QU(Q) = −jkui(~ei − ~er) (12)

at this point. So, the vector potential of the PEC half plane problem
can be found as

~W (Q,P ) = ui
1
4π

e−jkR

R

(
~eR × ~ei

1 + ~eR · ~ei
− ~eR × ~er

1 + ~eR · ~er

)
(13)
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by using Eqs. (6), (7), (9) and (12) in Eq. (4). The related unit vectors
can be written as

~eR =− cosφ~ex − sinφ~ey

~l =− ~ez

(14)

by considering the geometry in Figure 2. Then, one can obtain

(~eR × ~ei) ·~l
1 + ~eR · ~ei

=
− sin(φ− φ0)

1 + cos(φ− φ0)
= − tan

(
φ− φ0

2

)
(15)

and
(~eR × ~er) ·~l
1 + ~eR · ~er

= tan
(

φ + φ0

2

)
(16)

by considering Eqs. (10) and (15). Hence, the diffracted field integral
can be found by utilizing Eqs. (13), (15) and (16) in Eq. (3). One
obtains

UB(P ) = −ui
1
4π

[
tan

(
φ− φ0

2

)
− tan

(
φ + φ0

2

)]∫

Γ

e−jkR

R
dl. (17)

where, R is equal to [x2+y2+(z−z′)2]1/2 and dl = dz′ for this problem.
Therefore, the diffracted field’s integral can be rewritten as

UB(P )=−ui
1
4π

[
tan

(
φ− φ0

2

)
−tan

(
φ + φ0

2

)] ∞∫

z′=−∞

e−jkR

R
dz′. (18)

The integral expression in Eq. (18) defines a Hankel function [20]
∫

c

e−jkchγdγ =
π

j
H

(2)
0 (kρ) (19)

by using the variable change of (z − z′) = ρshγ, where ρ is equal to
[x2 + y2]1/2. As a result, Eq. (18) gives

UB(P ) = −ui
1
4j

[
tan

(
φ− φ0

2

)
− tan

(
φ + φ0

2

)]
H

(2)
0 (kρ). (20)

Debye’s asymptotic expansion of the second kind Hankel function can
be given as

H
(2)
0 (kυ) ≈

√
2
π

e−j[kυ−(π/4)]

√
kυ

(21)
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for kρ →∞. Hence, the diffracted field can be found as

UB(P ) ≈ − ui

2
√

2π

[
tan

(
φ− φ0

2

)
− tan

(
φ + φ0

2

)]
e−jkρ−jπ/4

√
kρ

(22)

for the PEC half plane. The diffracted field in Eq. (22) approaches to
infinity at the transition region. Otherwise, the uniform diffracted
fields are finite in regions where the non-uniform solution goes to
infinity. Hence, the first part of the diffracted field can be derived
as

UBi(P )≈−uie
−jπ/4

2
√

π
sin

(
φ− φ0

2

)
e
−j2kρ cos2

(
φ−φ0

2

)

√
2kρ cos

(
φ−φ0

2

)ejkρ cos(φ−φ0) (23)

by utilizing the trigonometric identity of 1 = 2 cos2(A) − cos(2A).
Hence, Eq. (23) can be written as

UBi(P ) ≈ ui

∧
F (ξi) sin

(
φ− φ0

2

)
ejkρ cos(φ−φ0). (24)

Here,
∧
F (ξi) is equal to e−j(ξ2

i +π/4)/(2
√

πξi). ξi, the argument of
the Fresnel function, represents the detour parameter [21,22]. The
detour parameter gives the phase difference between the incident (or
reflected) and diffracted fields. This can be given symbolically as
ξ = −√

ψi,r − ψd, where ψi,r is the phase function of the incident
(or reflected) field and ψd is the phase function of the diffracted field.
Thus, the detour parameter associated with the incident field can be
easily obtained as

ξi = −
√

2kρ cos[(φ− φ0)/2] (25)

by considering Eqs. (10) and (22). So, the first uniform part of the
diffracted field can be written as

UBi(P ) ≈ uiF (|ξi|)sgn(ξi) sin
(

φ− φ0

2

)
ejkρ cos(φ−φ0) (26)

by using the asymptotic relation of the Fresnel function for large

arguments, i.e.,
∧
F (ξi) ≈ F (|ξi|)sgn(ξi). Here, sgn(ξi) shows the signum

function. Fresnel integral F (ξi) can be given as

F (ξi) =
ej π

4√
π

∞∫

ξi

e−jt2dt. (27)
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Similarly, the second uniform part of the diffracted field can be found
as

UBr(P ) ≈ −uiF (|ξr|)sgn(ξr) sin
(

φ + φ0

2

)
ejkρ cos(φ+φ0) (28)

Here, ξr is the detour parameter associated with the reflected field and
can be obtained as

ξr = −
√

2kρ cos[(φ + φ0)/2] (29)

by considering Eqs. (11) and (22). As a result, the uniform total
diffracted field can be found as

UB(P ) = UBi(P ) + UBr(P )

= ui

[
F (|ξi|)sgn(ξi) sin

(
φ− φ0

2

)
ejkρ cos(φ−φ0)

−F (|ξr|)sgn(ξr) sin
(

φ + φ0

2

)
ejkρ cos(φ+φ0)

]
(30)

for the PEC half plane.

4. DISCUSSION AND NUMERICAL RESULTS

In this section, the extended TBDW total scattered fields are compared
with the exact solution of the perfectly electric conducting (PEC) half
plane problem. The exact solution can be given as [23]

U
(pec)
t (P ) = 2ui

∞∑

n=1

ejnπ/4Jn/2(kρ) sin
(

nφ

2

)
sin

(
nφ0

2

)
. (31)

The extended TBDW total scattered fields is derived as

U
(pec)
Bt = ui

{
ejkρ cos(φ−φ0)u(−ξi)− ejkρ cos(φ+φ0)u(−ξr)

+
[
F (|ξi|)sgn(ξi) sin

(
φ− φ0

2

)
ejkρ cos(φ−φ0)

−F (|ξr|)sgn(ξr) sin
(

φ + φ0

2

)
ejkρ cos(φ+φ0)

]}
(32)

by using Eqs. (10), (11), and (30) for PEC half plane problem.
The variations of the extended TBDW total scattered fields,

Eq. (32), and the exact solution of the Helmholtz equation, Eq. (31),
with observation angles are given in Figure 3.
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Figure 3. Comparison of total scattered fields for the angles of edge
incidence.

Here, ui is the selected as unit amplitude, and kρ is taken as
10. The angles of the edge incidence (φ0) are selected as π/6 and
π/4 in Figure 3. It is seen from Figure 3 that the extended TBDW
total scattered fields are very close to the exact solution. It should be
noted that the same observation is valid for all the angles of the edge
incidence (φ0).

         (a) ( 100=rk  ) (b) ( 1000=rk  )

Figure 4. Comparison of total scattered fields for the values of kρ.

The variations of the extended TBDW total scattered fields and
the exact solution of the Helmholtz equation for different kρ values are
also given in Figure 4. Here, ui is selected as unit amplitude, and the
angle of edge incidence φ0 is taken as π/6. kρ values are selected as
in Figure 4. It is observed that the extended TBDW total scattered
fields approximate to the exact solution successfully for all observation
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angles. It should be noted that the same observation holds true also
for all values of kρ.

5. CONCLUSION

The contribution of this study relies mainly on the extension of the
theory of boundary diffraction wave (TBDW). In the paper, a new
vector potential is proposed for TBDW. By using this new vector
potential in Helmholtz-Kirchhoff integral, TBDW is extended for the
perfectly electric conducting (PEC) surfaces. The extended TBDW
is then applied to the problem of scattering from a PEC half plane.
The diffraction integral is obtained and evaluated asymptotically by
using Debye’s asymptotic expansion of the Hankel function. The
extended TBDW solutions of diffracted fields are made uniform by
using the detour parameter. The total uniform scattered fields are
compared numerically with the exact solution of the same problem.
The numerical comparisons given in this study prove that the extended
TBDW and the exact solutions are in good agreement.
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