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Abstract—A deterministic method for detecting faulty elements
in phased arrays is proposed and tested against experimental and
numerical data. The solution approach assumes as input the amplitude
and phase of the near-field distributions and allows to determine
both positions and currents of radiating elements. The corresponding
non linear inverse problem is properly solved by exploiting the
distributional approach, which allows to cast the initial problem to
the solution of a linear one, whose solution is made stable by adopting
a proper regularization scheme based on the Truncated Singular Value
Decomposition tool. The results fully confirm accuracy of the proposed
technique.

1. MOTIVATIONS

Many applications, ranging from sonar, radar and space communica-
tions, need for fully active phased arrays [1–3]. These antennas have
several hundreds of radiating elements or proper sub-arrays [2, 3], and
the possibility of their failure strongly increases. These element fail-
ures can cause sharp variations in the aperture field across the array
aperture, thus increasing both the sidelobes and the ripple level of the
far-field radiation pattern. In order to know which element or elements
are damaged, active antennas can include calibration systems. These
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systems make an easy control of the system components, but it can fail
if the calibration system is damaged too. Moreover, calibration sys-
tems can be also rejected because its inclusion means a critical increase
in array volume, weight and costs.

An alternative solution consists in the location of the faulty
elements starting from the measures of the far or near-field data.
With these approaches one can determine the excitation coefficients
of each radiating element and detects the failures by comparing the
reconstructed ones with the nominal currents. Several deterministic
and stochastic techniques have been developed [4–9] in the last years.
Among the stochastic approaches, we point out the learning algorithms
based on examples, such as neural networks [4, 5], and the genetic
algorithms based approaches [6, 7]. These methods have the advantage
to require small amount of samples of the radiated field and, in many
cases, only amplitude data [7], but, due to the high size of search space,
they can have poor performances.

Note the diffused enthusiasm for physically inspired optimization
techniques has induced to neglect the fact that all global optimization
algorithms are limited in their performances by the computational cost
required to get, within a given precision, the actual solution. This cost
grows very rapidly with the number of unknowns [12], i.e., with the
phased array antenna size. As a consequence, in large scale problems,
due to the necessity of stopping the search after a given amount of flops,
it is likely that only sub-optimal solutions will be generally achieved,
which can be significantly worse than the actual optimal ones.

Moreover, not only general global algorithms are computationally
heavy: they are all essentially equivalent, as implied by the so called No
Free Lunch Theorems [13]. These theorems state that a truly general-
purpose universal optimization strategy does not exist [13]: on average
the performances of any two optimization algorithms are the same
across all possible optimization problems. Hence, for any algorithm,
an elevated performance over one class of problems is exactly paid
for in performance over another class. Now, for a given sufficiently
general algorithm, neither it is practically possible to characterize the
class of problems to which it is fitted, nor we can blindly refer to
results obtained in a other area [13]. And so, the only way to devise an
effective algorithm is to exploit the properties of the specific class of
problems under consideration, thus possibly avoiding the use of global
optimization schemes.

Among the deterministic methods, a simple and fast approach to
estimate the array excitations from near-field measures is the Backward
Transformation Method (BTM) [10], based on a proper exploitation of
the Fast Fourier Transform (FFT) algorithm. A different method has
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been proposed in [11] and has been compared to the BTM [10]. It
has been shown that the method in [11] has better performance than
BTM when the noise and the truncation error in the data can not
be neglected (as happens in actual applications). Finally, in [15], an
interesting comparison among several approaches for finding defective
elements in large antenna arrays has been also performed.

Anyway, large experimental evidence of the good performance of
the BTM in case of planar array diagnosis is present in literature, so
that no doubt exists about the practical convenience of the BTM with
respect to the proposed approach in case of planar array diagnosis.
In this contribution, we consider a novel and effective determinist
approach that properly overcomes the limitation of planar arrays
and that has good performances in case of unknown measurement
position error. In particular, in order to account of this last problem,
we assume that as well as the excitation also the position of the
radiating elements are unknown of the diagnostic tool. Different from
traditional approaches discussed above, the problem at hand belongs to
the class of nonlinear inverse problems [14]. Note the near-field data
depend in a linear way on the excitation coefficients and in a non-
linear way from the elements locations. Therefore, in principle, global
optimization scheme should be exploited. To overcome the need to use
global optimization schemes, we herein propose to linearize the inverse
problem by properly exploiting the distributional approach adopted
in [14–16].

The paper is organized as follows. In Section II, the distributional
approach is briefly recalled and applied to the problem at hand. In
Section III the proposed method is experimentally compared with the
classical method in [10] for the case of a fully active phased array and
then numerically tested for the case of a conformal array and spherical
measurement system. Conclusions follow.

2. THE PROPOSED SOLUTION SCHEME

Let us consider an array of N elements, located in unknown positions
rn(xn, yn, zn). Let wn and fn(θ, φ) be the excitation coefficient and
the electric-field radiation pattern of the n — the radiating element,
respectively (Fig. 1). A probe having effective height h(θ, φ) is placed
in a known spatial point rm(xm, ym, zm). The voltage at the probe
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Figure 1. Geometry of the problem showing the n − th radiating
element position and the m − th measurement position of the probe.

output can be expressed as

V (xm, ym, zm) =
N∑

n=1

wnfn(θm,n, φm,n) ·

h(θn,m, φn,m)
exp(−j k0Rmn)

4πRmn
(1)

where ⊗ denotes the usual dot product, k0 = 2π
λ is the free-space

wavenumber, and λ is the working wavelength. Moreover, θm,n and
φm,n are the relative angles between the m-th measurement point and
n-th element position defined as

θm,n = arccos
[
zm − zn

Rmn

]

φm,n = arctan
[

ym − yn

xm − xn

] (2)

with Rmn = |rm − rn|. Furthermore, we assume the system of targets
is composed by identical radiating elements, so that fn(θm,n, φm,n) =
f(θm,n, φm,n)∀n.

Aim of the problem at hand is to determine both locations rn and
excitations wn of the N radiating elements from a set of M samples
of amplitude and phase near-field radiation pattern (or M values of
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voltages given by Eq. (1). From Eq. (1), it can seen that the measured
voltages (the data of the inverse problem) and the actual unknowns
(wn, rn) are differently related each other. In particular, while the data
of the problem are related to the excitation coefficients wn with a linear
relation, the unknown locations appear in Eq. (1) as the arguments of
the exponential terms, thus making the overall diagnostic problem a
non-linear inverse problem. To overcome such a problem and properly
taking advantage from the linearity of the problem with respect to a
part of the unknowns, inspired by the hybrid array synthesis method
proposed in [19], a possible idea is to cast the global diagnostic problem
to the solution of a more simple linear problem after representing the
unknown elements positions by means of δ functions [14–16].

In particular, after introducing the function

γ(́r) =
N∑

n=1

wnδ(́r − rn) (3)

which takes accounts for the position and the excitation coefficients of
the radiating elements, it is possible to rewrite Eq. (1) as follows

V (xm, ym, zm) =
∫

D
f(θm,́r, φm,́r)

·h(θŕ,m, φŕ,m)
exp(−j k0Rm)

4πRm
γ(́r)dV′ (4)

where θm,́r and φm,́r are defined as

θm,́r = arccos
[
zm − z′

Rm

]

φm,́r = arctan
[

ym − y′

xm − x′

] (5)

with Rm = |rm − ŕ|, ŕ(x′, y′, z′) ∈ D, and D the spatial domain
containing all the radiating elements. As it can be seen from Eq. (4), by
using Eq. (3), the determination of locations and excitation coefficients
of the radiating elements is cast to the inversion of the linear operator
defined by the Eq. (4), with values in the Hilbert space L2(O) of square
integrable functions defined over the observation domain O, i.e., the
spatial domain where we measure the voltage V .

Note that, by using Eq. (4), the function γ(́r) becomes the actual
unknown of the linear inverse problem in Eq. (5).

As well known [14], due to the presence of noise in the measured
data, the solution of the above problem generally does not exist
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and a generalized solution has to be searched [14]. Moreover, the
lack of independent data due to the truncation of the measurement
domain and the adoption of sub-optimal sampling points, (see [20]
for a detailed discussion on this issue) makes the inverse problem at
hand an ill-posed problem [14]. In order to stabilize the solution, a
regularization procedure has to be adopted. In the following, we adopt
the Truncated Singular Value Decomposition method described in [14],
which effectively allows to obtain a trade-off between accuracy and
stability of the solution [14].

In detail, if {un, σn, vn}∞n=0 denotes the singular system [14] of the
radiation operator in Eq. (4), the estimated version of the unknown
γ(́r) function, achieved by using a standard TSVD [14] based procedure
can be expressed as [14]

γ̂(r) =
NT∑
n=0

〈V (r), vn〉
σn

un (6)

where 〈·, ·〉 denotes the scalar product in the space L2(O) while NT is
the TSVD truncation index [14]. Notably, the proposed formulation
can be applied for arbitrary geometries (e.g., conformal arrays) and/or
measurement domain (e.g., spherical measurement systems). In the
following, both traditional planar array with usual planar measurement
system and conformal array with spherical measurement system are
considered.

Figure 2. The adopted experimental set-up and the considered phased
array layout.
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(a) Azimuth cut (b) Elevation cut

Figure 3. A comparison between the theoretical radiation pattern
(blue solid line) and the measured one (red dot-line) of the phased
array layout in Fig. 2.

3. TESTING AGAINST EXPERIMENTAL AND
NUMERICAL DATA

As first example, the proposed diagnostic tool has been tested for the
case of N = 604 horn elements located as shown in Fig. 2. The data for
the inversion have been collected using a traditional planar scanning
placed at distance 5λ from the antenna under test aperture, and a fixed
number of radiating elements have been forced off. The dimensions of
the spatial domain D = [−7λ, 5λ]×[−15λ, 15λ] and of the measurement
plane O = [−15λ, 15λ] × [−20λ, 20λ] are input data for the problem,
see Fig. 2. The voltages (amplitude and phase) have been collected
in M = 61 × 81 points. The probe is a small horn antenna. All
the measurement set-up is available at the Research and Development
Department of SELEX Sistemi Integrati.

As first step, let us observe the desired and measured radiation
patterns reported in Fig. 3. The first one has been achieved
by using a Taylor current distribution such to fulfill the design
constraints. The measured one is obtained by standard near-field far-
field transformation [21] starting from the measured near-field data.
As it can be seen, according to the above hypothesis, the measured
radiation pattern and the theoretical one are sensibly different. The
overall pattern shapes and the sidelobes level are different, and a
proper investigation aimed to detect possibly faulty elements becomes
mandatory. To this aim, the measured near-field data have been first
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Figure 4. Reconstructed amplitude (a) and phase (b) distributions
by using the method in [10].

processed by using the BTM method of [10]. Fig. 4(a) and Fig. 4(b)
show the amplitude and phase distributions of the excitation coefficient
respectively. Then, the available data have been processed by adopting
the diagnostic tool herein proposed (see Fig. 5). As it can be seen and
as we expected for this case (planar geometry and planar measurement
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Figure 5. Reconstructed amplitude (a) and phase (b) distributions
by using the proposed method.

system), the two methods obtain very similar results. Indeed, both
BTM [10] and method herein proposed allow to identify that the main
problem is an error of the elements of two semi-row of the phases array
antenna under test. Moreover, Figs. 4 and 5 show a mismatch along
the y-axis between the system reference centered on the AUT and the
system reference centered on the measured domain O.
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Figure 6. A comparison between the measured (blue solid line) and
reconstructed (red dot-line) radiation pattern of the antenna under
test. The reconstructed one has been achieved by using the retrieved
currents in Fig. 5.

In order to emphasize the capability of the proposed method of
detecting array failure, as well as the possibility to evaluate the actual
currents, the far-field of the considered phased array has been evaluated
starting from the reconstructed currents. The achieved result has been
compared with the measured one, see Fig. 6. The good agreement
between the two curves fully confirms the accuracy and usefulness of
the developed tools.

As further comment, note the proposed method is characterized by
an higher computational cost and memory requirements than BTM one
[10], being based on the evaluation of a Singular Value Decomposition
of the radiation operator relating the unknowns of the problem to
the (measured) near-field. On the other hand, the BTM method [10]
does not allow to detect faulty elements in non planar arrays. These
kind of geometries can be instead considered by using the proposed
diagnostic tool. Moreover, due to the adopted regularization scheme,
the proposed method exhibits an increased robustness against noise
with respect to [10].

In order to point out the effectiveness of the proposed approach
for generic geometry arrays and measurement systems, we consider
the case of a conformal array composed by N = 33 Hertzian dipole
located as shown in Fig. 7(b) (the large black dot). The data for
the inversion have been simulated by using Computer Simulation
Technology Microwave Studio (CST MWS) [22], a commercial full wave
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Figure 7. The adopted measurement configuration (a) and the
considered conformal phased array layout (b) for the numerical
simulation.
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Figure 8. Reconstructed amplitude distributions by using the
proposed method.

3D electromagnetic (EM) simulator based on the Finite-Integration
Technique. In particular, the spatial domain D is a bounded surface
domain of a cylinder described by equations ρ = 10λ, φ ∈ [−30, 30] deg,
z ∈ [−3λ, 3λ] and the measurement domain O is a bounded surface
domain of a sphere described by equations ρ = 15λ, θ ∈ [60, 120] deg,
φ ∈ [−60, 60] deg (see Fig. 7). The voltages (amplitude and phase)
have been collected in M = 31 × 62 points of the measurement
domain O. The red circled radiating elements in Fig. 7 (b) have been
forced off and the remaining ones are excited by a unitary current
amplitude. The calculated data have been processed by adopting the
proposed diagnostic tool (see Fig. 8). As it can be seen, all the turned
off elements are well localized and the amplitude of the excitation
coefficients is very well reconstructed for all the radiating elements.
So, this confirms the relevance of the proposed method that extend
the use to more complex geometry arrays and measurement systems.

4. CONCLUSIONS

A novel and effective deterministic method for detecting faulty
elements in large phased arrays of generic geometry has been proposed
and tested against experimental data measured at SELEX Sistemi
Integrati and numerical data obtained using CST MSW simulation
tool. The proposed strategy assumes as input the amplitude and phase
of the near-field distribution and allows to determine both positions
and currents of all radiating elements, thus detecting location and
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number of faulty antennas. By properly adopting a distributional
approach, the overall problem has been cast to the solution of a
simple linear problem, whose solution is made stable by adopting a
proper regularization scheme based on the Truncated Singular Value
Decomposition tool.

The achieved results fully confirm accuracy, usefulness and
robustness against noise of the proposed technique.
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