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Abstract—A new subspace method based on spatial-temporal
structure is presented for estimation of directions-of-arrival (DOA’s)
and ranges of multiple near-field sources impinging on an array of
sensors. The arrival angle and range parameters are directly given by
the eigenvalues of a set of constructed matrices and the computational
complexity of the proposed method is lower than those of several
available methods which do not require search operation. Simulation
results show that the proposed method outperforms an ESPRIT-like
method.

1. INTRODUCTION

In array signal processing, many methods for estimation of direction-
of-arrival (DOA) of far-field source impinging on an array of sensors
have been developed [1], such as MUSIC and ESPRIT. Most of these
methods assume that the received sources are located relatively far
from the array and hence the wavefronts from the sources can be
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regarded as plane waves. With this assumption, each source location
can be characterized by a single DOA [1]. When the source is close
to the array which corresponds to the near-field scenario, the plane
wave assumption is no longer valid. The near-field sources must be
characterized by spherical wavefronts at the array aperture and need
to be localized by both range and DOA [2–5]. Note that the near-field
situation is common in applications for sonar [2], seismic exploration [3]
and electronic surveillance [8], etc.

Since the available methods based on the far-field assumption
cannot be directly applied to the case of near-field, in recent years, the
problem of near-field source localization has attracted much attention
in the literature [2–11]. The maximum likelihood estimator is proposed
in [2] and the resulting estimates have optimal statistical properties,
but it requires a multidimensional search and is highly non-linear.
Huang et al. [4] and Jeffers et al. [5] have extended the conventional
1-D MUSIC method to 2-D for joint range and DOA estimation.
However, the 2-D MUSIC technique of [4] requires an exhaustive 2-
D search which corresponds to a high computation cost. Instead
of 2-D search, [5] is explicitly shown to involve two 1-D searches
in an alternating maximization scheme which can be implemented
in a computationally efficient manner. Starer and Nehorai [6] have
proposed a path-following algorithm in which the peaks of the 2-D
MUSIC spectrum are found by following the paths. This path-following
algorithm requires fewer computations than that of the 2-D MUSIC
approach because it searches the 1-D paths to estimate the source
location. However, the required path calculations correspond to a
bulky computational burden. In order to reduce the computational
complexity of [6], a modified path-following algorithm using a known
algebraic path has been devised in [7]. In addition, Lee et al. [8]
have used the conventional far-field beamforming output to initialize a
3-D search and thus the computational burden is reduced to some
extent. Weiss and Friedlander [9] have developed a method for
DOA estimation at a given trial range value using a polynomial
rooting method which makes the 2-D search simpler. To avoid the
multidimensional search, Challa and Shamsunder [10] have developed
a total least squares ESPRIT-like algorithm based on the fourth-
order cumulant. Unfortunately, it still requires large amount of
computations to construct a high-dimension cumulant matrices as well
as a large number of snapshots for accurate cumulant estimation and
is applicable only for non-Gaussian sources. More recently, a weighted
linear prediction method for near-field source localization is presented
in [11, 12]. Nevertheless, a set of complex optimization calculations
and weighting matrix inverses are required to improve the estimation
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accuracy.
In this paper, a spatial-temporal structure based method for

joint DOA and range estimation of near-field sources is presented.
The motivation for using the spatial-temporal structure of spatial
correlation sequences is to reduce the effect of observed noise as well
as to achieve performance improvement in the case of limited data
snapshots by constructing the so-called “pseudo-snapshots” [14, 15].
The proposed method uses only second-order statistics and is suitable
for both Gaussian and non-Gaussian signal sources. A closed-form
estimation of both DOA and range is provided through a subspace
method. The rest of the paper is organized as follows. Section 2
describes the data model for the near-field source localization and
the problem formulation. The proposed algorithm is developed in
Section 3. Finally, simulation results are provided in Section 4, followed
by a conclusion in Section 5.

2. PROBLEM FORMULATION

We consider the narrow-band model for array processing of near-field
sources where there are P narrow-band sources received by a uniform
linear array of n = 2N + 1 sensors with inter-element spacing d. The
array configuration is shown in Figure 1. For unique estimation, we
require d ≤ λ/4 [10] where λ denotes the wavelength of the source
wavefronts and N > P . The output of the mth sensor can be
approximated as [2–11]:

xm(t) =
P∑

i=1

si(t)ej(ωim+φim2) + nm(t), t = 1, 2, . . . ,M (1)

for m = −N, . . . , 0, 1, . . . , N . It is assumed that P is known a priori
and the P sources {s1(t), . . . , sP (t)} are statistically independent of
each other while the additive noise component nm(t) is a zero-mean
white Gaussian process and is independent of the source signals. Here
we let the sensor m = 0 be the phase reference point, which is also
the origin of our coordinate system. The parameters ωi and φi are
functions of the azimuth angle θi and range ri of the ith source, and
they are expressed as

ωi =
−2π
λ

d sin(θi) and φi =
d2π

λri
cos2(θi) (2)

The goal is to estimate the parameters {θ1, . . . , θP , r1, . . . , rP } of the
P sources from the received array data {x−N (t), . . . , xN (t)}.
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Figure 1. Configuration of uniform linear array.

3. THE PROPOSED ALGORITHM

The proposed method can be divided into two steps and uses only
second-order statistics of the array output. The first step is a signal
pre-processing which consists of the computation of some properly
chosen spatial correlation sequences of the observed signal. These
correlation coefficients are shown to be superimposed exponential
sequences and their frequencies are linear functions of angles and ranges
of the source signals.

The second step is to transform the cross-correlated spatial
sequences of the observed signal from 1-D space domain to 2-D space-
time domain and then use a subspace rotation invariance technique to
obtain the estimates of ωi and φi.

Under the assumption of spatial-temporal white Gaussian noise,
the correlation sequences for {xm(t)} are:

r(−l,l)(τ) =
P∑

i=1

rsisi(τ)e−2jωil + σ2δ(l + τ) (3)

r(−l−1,l)(τ) =
P∑

i=1

rsisi(τ)e−j(ωi−φi)(2l+1) (4)

r(−l+1,l)(τ) =
P∑

i=1

rsisi(τ)e−j(ωi+φi)(2l−1) (5)

where

r(k,l)(τ) = E{xk(t + τ/2)x∗
l (t − τ/2)}, k = −N, . . . , 0, l = 0, 1, . . . , N

(6)
and

rsisi(τ) = E{si(t + τ/2)s∗i (t − τ/2)} (7)



Progress In Electromagnetics Research C, Vol. 8, 2009 31

is the autocorrelation function of ith source where ∗ denotes the
conjugate operator, σ2 is the noise power of nm(t) and δ(·) is the
impulse function. It is noteworthy that we will ignore the noise term
in (3) at l = 0 and τ = 0 in the following development as σ2 is assumed
known a priori or accurately estimated [16].

Equations (3)–(5) show that the noise-free correlation sequence
corresponds to the time series of harmonic sequences with harmonic
frequencies given by ωi, ωi − φi and ωi + φi, respectively. Therefore,
we can estimate the harmonic components by a subspace-based high-
resolution estimation method.

For l = 0, 1, 2, . . . , N , we define the following vectors with the use
of (3)–(5):

X(τ) = [r(0,0)(τ), r(−1,1)(τ), . . . , r(−N,N)(τ)]T(N+1)×1 (8)

Y(τ) = [r(−1,0)(τ), r(−2,1)(τ), . . . , r(−N,N−1)(τ)]TN×1 (9)

Z(τ) = [r(1,0)(τ), r(0,1)(τ), . . . , r(−N+1,N)(τ)]T(N+1)×1 (10)

where T denotes the transpose operator. Note that the dimension of
Y(τ) is different from those of X(τ) and Z(τ).

We can rewrite (8)–(10) in matrix form as:

X(τ) = Ax(ω1, ω2, . . . , ωP )Rs(τ) (11)
Y(τ) = Ay(ω1 − φ1, ω2 − φ2, . . . , ωP − φP )Rs(τ) (12)
Z(τ) = Az(ω1 + φ1, ω2 + φ2, . . . , ωP + φP )Rs(τ) (13)

where

Rs(τ) = [rs1s1(τ), . . . , rsisi(τ), . . . , rsP sP
(τ)]T (14)

Ax =

⎛
⎜⎜⎝

1 . . . 1
e−j2ω1 . . . e−j2ωP

...
...

...
e−j2ω1N . . . e−j2ωP N

⎞
⎟⎟⎠

(N+1)×P

(15)

Ay =

⎛
⎜⎜⎜⎝

e−j(ω1−φ1) . . . e−j(ωP−φP )

e−j3(ω1−φ1) . . . e−j3(ωP−φP )

...
...

...
e−j(2N+1)(ω1−φ1) . . . e−j(2N+1)(ωP −φP )

⎞
⎟⎟⎟⎠

N×P

(16)

Az =

⎛
⎜⎜⎜⎝

e−j(−1)(ω1+φ1) . . . e−j(−1)(ωP +φP )

e−j(ω1+φ1) . . . e−j(ωP +φP )

...
...

...
e−j(2N−1)(ω1+φ1) . . . e−j(2N−1)(ωP +φP )

⎞
⎟⎟⎟⎠

(N+1)×P

(17)
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We sample again the correlation sequences

{r(−l,l)(τ), r(−l−1,l)(τ), r(−l+1,l)(τ)}
at K lags where K denotes the number of “pseudo-snapshots” [14, 15].
Let τ = 0, Ts, 2Ts, . . . , (K − 1)Ts where Ts represents the sample
interval of the pseudo-snapshots which is chosen as an integral multiple
of the original sample interval of the observed data xm(t). As a result,
(K−1)Ts is always smaller than the number of samples of the observed
array data M . The value of K should satisfy N < (K − 1) ≤ M/Ts

and (K − 1)Ts ≤ L is required to ensure rsisi((K − 1)Ts) �= 0 where L
is the correlation length of the source signals.

We then obtain the following data matrices using the spatial-
temporal samples,

Rx = [X(0Ts),X(Ts),X(2Ts), . . . ,X((K − 1)Ts)](N+1)×K =AxR0(18)
Ry = [Y(0Ts),Y(Ts),Y(2Ts), . . . ,Y((K − 1)Ts)]N×K =AyR0 (19)
Rz = [Z(0Ts),Z(Ts),Z(2Ts), . . . ,Z((K − 1)Ts)](N+1)×K =AzR0 (20)

where
R0 = [Rs(0),Rs(Ts), . . . ,Rs((K − 1)Ts)]P×K (21)

Now we define

Rx1 = Rx(1 : N, :) and Rx2 = Rx(2 : (N + 1), :) (22)

where Rx(k : l, :) takes the k-th to l-th rows of Rx. We have

Rx1 = Ax1Rs and Rx2 = Ax1ΦxRs (23)

where
Ax1 = Ax(1 : N, :) (24)

and

Φx =

⎛
⎜⎜⎝

e−j2ω1 0 . . . 0
0 e−j2ω2 . . . 0
...

...
. . .

...
0 0 . . . e−j2ωP

⎞
⎟⎟⎠ (25)

It is assumed that the matrices Ax and R0 are of full rank. The
full rank assumption of Ax is classical and is generally valid for
real applications. In applications such as radar, sonar and wireless
communications, the a priori knowledge of source signals is available
and hence the condition that R0 is full rank can be satisfied [14, 15].
Following [15], we can easily obtain:

R1Ax1 = Ax1Φx (26)
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where R1 is calculated as

R1 = Rx2[Rx1]# (27)

with (·)# denotes the pseudo-inverse of a matrix.
Similar to (21)–(23), we use (19)–(20) to obtain:

R2Ay1 = Ay1Φy and R3Az1 = Az1Φz (28)

where

R2 = Ry(2 : N, :)[Ry(1 : (N − 1), :)]# (29)

R3 = Rz(2 : (N + 1), :)[Rz(1 : N, :)]# (30)
Ay1 = Ay(1 : (N − 1), :) and Az1 = Az(1 : N, :) (31)

Φy =

⎛
⎜⎜⎜⎝

e−j2(ω1−φ1) 0 . . . 0
0 e−j2(ω2−φ2) . . . 0
...

...
. . .

...
0 0 . . . e−j2(ωP −φP )

⎞
⎟⎟⎟⎠ (32)

and

Φz =

⎛
⎜⎜⎜⎝

e−j2(ω1+φ1) 0 . . . 0
0 e−j2(ω2+φ2) . . . 0
...

...
. . .

...
0 0 . . . e−j2(ωP +φP )

⎞
⎟⎟⎟⎠ (33)

Note that the dimensions of R1,R2 and R3 are N ×N, (N − 1)× (N1)
and N × N , respectively. As a result, the estimates of the matrices
Φx, Φy, and Φz can be given by the P nonzero eigenvalues from the
eigenvalue decomposition of R1, R2, and R3, respectively. The angles
and ranges estimates are easily computed by the diagonal elements of
Φx,Φy, and Φz.

To estimate the ranges and angles of the sources, we first need
to pair the elements of the three sets of parameters, namely, {ω̂i},
{ω̂i − φ̂i}, and {ω̂i + φ̂i} where ω̂i and φ̂i represent the estimate of
ωi and φi, respectively. This is achieved as follows [11]. For each ω̂i,
1 ≤ i ≤ P , its corresponding value of φ̂i is obtained as:

φ̂i =
[(

ω̂l0 + φ̂l0

)
−

(
ω̂k0 − φ̂k0

)]
/2 (34)

where the indexes (k0, l0) are given by

(k0, l0) = arg min
k,l

∣∣∣ω̂i −
[(

ω̂k + φ̂k

)
+

(
ω̂l − φ̂l

)]
/2

∣∣∣ (35)
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From each pair of (ω̂i, φ̂i), i = 1, 2, . . . , P , the estimates of the DOA
and range parameters, denoted by θ̂i and r̂i, respectively, are computed
as

θ̂i = sin−1

(−λω̂i

2πd

)
(36)

r̂i =
πd2 cos2

(
θ̂i

)
λφ̂i

(37)

The procedure of the proposed algorithm is summarized as
• Compute the estimates of r(−l,l)(τ), r(−l−1,l)(τ) and r(−l+1,l)(τ) in

(3)–(5) with removing the noise term in (3), and then construct
X(τ), Y(τ), Z(τ) using (8)–(10).

• Construct Rx, Ry, Rz according to (18)–(20).
• Compute R1,R2 and R3 using (27), (29) and (30).
• Perform eigenvalue decomposition of Ri, i = 1, 2, 3, to obtain the

corresponding eigenvalues, and then the parameter estimates, ω̂i,
ω̂i− φ̂i and ω̂i + φ̂i, are calculated with the use of the phase angles
of the corresponding eigenvalues.

• Pair the estimated parameters {ω̂i, ω̂i− φ̂i, ω̂i + φ̂i} using (34) and
(35) and then get (ω̂i, φ̂i).

• Compute the source location parameters, θ̂i and r̂i, i = 1, 2, . . . , P ,
using (36) and (37).

Finally, it is helpful to compare the computational load of the proposed
method with other methods not requiring searches. In the ESPRIT-
like method [10], multiplications are needed in calculating four
cumulant matrices and in performing the eigen-decompositions, which
correspond to a complexity of 36N2M + o((3N)3) + o(P 3). Consider
the dominant operations in the proposed and WLP methods, namely,
multiplications involved in calculating the correlation sequences,
performing the eigenvalue decompositions and additional weighting
matrix inverses in the WLP method. The latter complexity is 3NM +
o((P + 1)3) + o((2N + 1 − P )3) while that of the proposed algorithm
is 3NM + o(N3). Clearly, the computational load of the ESPRIT-
like method is much larger than those of the other two methods.
Since P ≤ N is assumed in the proposed and WLP methods and
(2N +1−P ) > P , the former is also computationally simpler than the
latter even in the case of using only one iteration. As an illustration, for
N = 3 and P = 2, the proposed algorithm requires o(27) computations
in performing the eigen-decomposition while the complexities of the
WLP and ESPRIT-like methods are o(125) and o(729), respectively.
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4. SIMULATION RESULTS

A set of computer simulations is carried out to evaluate the
performance of the proposed method. We consider a uniform linear
array of n = 2N +1 sensors with inter-element spacing of d = λ/4. All
the sensor noise components {nm(t)} are zero-mean white Gaussian
processes with identical powers. Both Gaussian and non-Gaussian
signal sources are investigated. The performance is measured by the
root mean square error (RMSE).

In the first experiment, there are n = 7 sensors or N = 3.
Two non-Gaussian signal sources with equal powers, which are of the
forms of s1(t) = ej(0.2πt+ϕ1) and s2(t) = ej(0.4πt+ϕ2) where {ϕi} are
independent and are uniformly distributed in [0, 2π], are impinging
on this array. The first source is located at θ1 = 40◦ with a range
of r1 = 5λ, and the second is located at θ2 = 20◦ with r2 = 1.5λ.
The number of samples is set to M = 20 and the number of pseudo-
snapshots is K = 10 with Ts = 2. All results provided are averages of
100 independent runs. The RMSEs for the DOA and range estimates
of the two sources are shown in Figures 2 and 3. For comparison,
the results using the ESPRIT-like algorithm [10] as well as the WLP
method [12] are also shown. We can see that the estimation accuracy
of the proposed method is comparable to that of the WLP method,
but it is much higher than that of ESPRIT-like method over all signal-
to-noise ratio (SNR) conditions. Note that the performance of DOA
estimation is similar for both sources while the RMSE of the range
estimate for s2(t) is much lower than that of s1(t) because the second
source is close to the array while the first source is far from it, and this
agrees with the findings in [13].
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Figure 2. RMSEs of estimated DOA’s versus input SNR.
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Figure 3. RMSEs of estimated ranges versus input SNR.
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Figure 4. RMSEs of estimated DOA’s versus M .

In the second experiment, the input SNR of the two non-Gaussian
signal sources is assigned as SNR= 5dB and we vary M from 100 to
2000, with the corresponding number of pseudo-snapshots is set to
K = M/2. The results are based on 100 independent runs. The other
parameter settings are same as those in the first experiment. It is seen
from Figure 4 that the performance of the proposed method is superior
to that of ESPRIT-like method [10], especially in the case of small
number of snapshots, because the latter is based on the higher-order
cumulants and larger number of samples are required for their accurate
estimation. On the other hand, we observe that the performance of the
proposed method is still close to that of the WLP method for different
values of M .
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In the third experiment, we consider two equal-power non-
Gaussian signals impinging on an array of 9 sensors with SNR= 20 dB,
M = 50 and K = 25. The first source position is characterized by
(40◦, 1.5λ) while the DOA of the second source is fixed at 20◦ with its
range varies from 5λ to 20λ. 100 independent runs are conducted for
each range parameter and the results for the DOA estimates are shown
in Figure 5. We see that the performance of the proposed and WLP
methods is much better than that of ESPRIT-like method for different
ranges of the second source.
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Figure 5. RMSEs of estimated DOA’s versus range of second source.
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Figure 6. Estimated ranges and DOA’s for two non-Gaussian sources
with unequal powers.
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In the fourth experiment, the positions of the first and second
non-Gaussian sources are characterized by (40◦, 3.5λ) and (20◦, 2.5λ),
respectively, and they have different input SNR values, namely, 20 dB
and 10 dB. We assign n = 11, M = 50 and K = 25. The results based
on 50 independent runs are shown in Figure 6. We observe that the
proposed and WLS methods are comparable and their performance
is better than that of the ESPRIT-like method when the two sources
have unequal noise powers.

In the fifth experiment, we consider that there are three non-
Gaussian uncorrelated signal sources impinging on the received array.
The first and second source signals are same as before while s3(t) =
ej(0.8πt+ϕ3), and the position parameters are (60◦, 3.5λ), (40◦, 2.5λ),
(20◦, 1.5λ), respectively. The input SNRs of all received signals are
equal to 20 dB while n = 15, M = 100 and K = 50. It is shown
in Figure 7 that the performance of the proposed method and the
WLS scheme is comparable and they are superior to the ESPRIT-like
method, particularly for the range estimates [13].

In the last experiment, we consider two uncorrelated colored
Gaussian signal sources whose positions are parameterized by
(40◦, 0.5λ) and (20◦, 2.5λ). The input SNRs of the two signals are
both equal to 20 dB while n = 11, M = 100 and K = 50. The results
based on 50 independent runs are shown in Figure 8. As mentioned
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Figure 7. Estimated ranges and DOA’s for three non-Gaussian
sources with equal powers.
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in Section 1, the ESPRIT-like method which utilizes the fourth-order
cumulants fails to resolve the two Gaussian signal sources. On the other
hand, it is seen that the two methods using second-order statistics can
still give accurate estimates of ranges and angles for colored Gaussian
signal sources.
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Figure 8. Estimated ranges and DOA’s for two Gaussian signal
sources with equal powers.

5. CONCLUSION

In this paper, a novel subspace method based on spatial-temporal
structure is presented for localization of multiple near-field sources.
The proposed algorithm only uses second-order statistics and requires a
simple pair-matching method in the case of multiple near-field sources.
Compared with several existing methods without search operation, the
proposed method is more computationally efficient. It is shown that
the estimation accuracy of the proposed method is comparable to the
weighted linear prediction scheme and is superior to the ESPRIT-like
method. As a future work, we will produce the performance analysis
of the parameter estimates.
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