
Progress In Electromagnetics Research M, Vol. 7, 71–85, 2009
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Abstract—The specific features of TE-wave propagation in a
structure fabricated by periodic alternating ferrite and semiconductor
layers are investigated. Dispersion characteristics of eigenwaves
are calculated. The transmission spectra of an electromagnetic
wave oblique incident from the uniform medium onto the multilayer
periodic ferrite-semiconductor structure is considered. The features of
transmission spectra of the structure with periodicity breakdown are
studied.

1. INTRODUCTION

The recent advent of artificial electromagnetic materials (metamateri-
als) has opened new opportunities for creating the media, which could
provide an additional control over the properties of propagating waves.
Semiconductor and ferromagnetic materials lie at the heat of current
information technology. The periodic layered structures with semi-
conductor and ferromagnetic layers combine different physical proper-
ties which do not exist in nature and may be promising for obtain-
ing magnetic systems in semiconductor electronics and spintronics.
These structures can easily change their characteristics in an exter-
nal magnetic field. The results of theoretical investigations of space-
inhomogeneous magnetic media were presented in [1–9]. It was consid-
ered the reflection from the semiinfinite periodically layered structure
composed of alternating semiconductor and insulator layers [10]. The
energy reflection for the case of TE-wave normal incidence on a semi-
infinite plane-stratified structure comprising magnet and nonmagnetic
dielectric layers was examined in [11]. It was shown that an external
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field can be used to control the spectrum and characteristics of reflected
waves. The peculiarities in the spectra of bulk and surface electromag-
netic waves in a periodic layered ferrite-semiconductor structure in the
effective (finely stratified) medium approximation for intrinsic types of
waves was studied in [12]. It was shown that ferrite composites have a
negative effective refraction index in some microwave frequencies. The
periodical metal-ferrite film composite with symmetrical configuration
was analyzed in [13]. It was demonstrated that multilayer waveguides
composed of ferromagnetic and dielectric materials have the negative
effective refraction index for TE- and TM-waveguide mode [14]. The
expressions for effective permeability and permittivity were obtained
in the long-wave limit. It was shown that in periodic ferromagnet-
semiconductor multilayer composite the left-handed behavior is possi-
ble [15–17].

In this paper, we derive analytical formulas and perform numerical
calculations of the reflection and transmission coefficients for the
electromagnetic wave incident onto a finite periodically layered
structure composed of the ferrite and semiconductor layers and
subjected to an external magnetic field. The external magnetic field
is applied parallel to the layers; the waves traveling in the plane
normal to the field are considered. It is shown that by analyzing
the frequency, angle of incidence, and magnetic field dependences of
the above coefficients one can determine the geometrical as well as
physical parameters of the layers making up the structure. We look
into the peculiarities of transmittivity through the periodic structure
with periodicity-violating ferrite layer.

Figure 1. Geometry of the problem.
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2. STATEMENT OF THE PROBLEM AND BASIC
EQUATIONS

Let us analyze the transmission and reflection of the plane-wave
from the magnetoactive periodic structure. Consider a finite periodic
structure consisting of alternate ferrite and semiconductor layers (see
Fig. 1). We assume that the first layer thickness is d1, whereas the
second layer thickness is d2 (index 1 refers to the ferrite layers and
index 2 to the semiconductor ones). Assume that the thickness of the
structure is L (L = Nd, where N is the number of periods, d = d1 +d2

is the period of the structure). We introduce a coordinate system such
that the x axis is parallel to the boundaries of the layers and the z axis
is perpendicular to the layers. We suppose that the structure is infinite
in the x and y directions. Let the structure be exposed to an external
magnetic field H0 parallel to the y axis. Assume the structure to be
placed between homogeneous media with the dielectric permittivities
εa and εb. The incident, reflected and transmitted wave vectors lie in
the xz plane.

Electromagnetic processes in this structure are described by the
Maxwell equations and by the equations of continuity and the motion
of charge carriers. We seek the variables in these equations in the form
of exp(ikxx + ikzz − iωt).

The permeability of ferrite layer is a tensor characteristic for the
investigated microwave region. It can be written as [18]

μ|| = μxx = μzz = 1 +
ωM

(
ω2

H + ω2
r − iωrω

)
ωH

(
ω2

H + ω2
r − ω2 − 2iωrω

) ,
μ⊥ = μxz = −μzx = − iωωM

ω2
H + ω2

r − ω2 − 2iωrω
,

where ωM = 2πeg
mc M , ωH = eg

2mcH0, g is the factor of spectroscopic
splitting, M is the saturation magnetization, ωr is the relaxation
frequency. The permittivity tensor for the medium has a diagonal
form with components εii = εf .

The permittivity tensor of the semiconductor layer can be given
as [19]

ε|| = εxx = εzz = ε0

⎡
⎣1 − ω2

p (ω + iν)

ω
(
(ω + iν)2 − ω2

c

)
⎤
⎦ ,
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ε⊥ = εxz = −εzx = −iε0

ω2
pωc

ω
(
(ω + iν)2 − ω2

c

) ,

εyy = ε0

[
1 − ω2

p

ω (ω + iν)

]
.

Here ε0 is the part of the permittivity attributed to the lattice, ωp is the
plasma frequency, ωc is the cyclotron frequency, and ν is the collision
frequency. The tensor of permeability for nonmagnetic semiconductor
is μii = 1. Suppose that the structure is uniform in the y direction.
Then, Maxwell’s equations split into independent equations for two
modes with different polarizations. We consider the TE-polarization
with components Hx, Hz, Ey. Note that the external magnetic field
affects the TE-wave properties in a ferrite layer only.

The transversal wavenumbers of the layers take the form:

kz1 =

√
ω2μF εf

c2
− k2

x, kz2 =

√
ω2εyy

c2
− k2

x,

where μF = μ|| +
μ2
⊥

μ||
is the effective permeability.

Now consider an infinite periodic structure consisting of alternate
ferrite and semiconductor layers. The boundary conditions imply that
the tangential electric field component and the normal component of
the magnetic induction are continuous at the boundaries between the
layers. Using the method of the transmission matrix (which relates
the fields at the at the beginning and the end of the period of the
structure) and applying the Floquet theorem, which takes into account
the periodicity of the structure, we arrive at the dispersion relation:

cos k̄d = cos kz1d1 cos kz2d2 − 1
2

[
kz1

kz2

1
μF

+
kz2

kz1
μF

− k2
x

kz1kz2μF

(
μ⊥
μ||

)2
]

sin kz1d1 sin kz2d2. (1)

Here k̄ is the Bloch wavenumber averaged over the period. The
analysis of expression for effective permeability reveals 2 characteristic
frequencies for magnetic layers: ω1 =

√
ωH (ωH + ωM) is the frequency

of ferromagnetic resonance (μF → 0), ω2 = ωH+ωM is the frequency of
anti-resonance (μ⊥ = 0). From the dispersion Equation (1) we obtain

third characteristic frequency: ω3 =
√

ω2
H + ω2

M
2 + ωHωM , for which

the expression in square brackets is equal to zero.



Progress In Electromagnetics Research M, Vol. 7, 2009 75

0.0 1.0 2.0 3.0 4.0 5.0
kxd

ω
. 1

0-1
0 , 

s-1

4.8

5.2

5.6

6.0

6.4

ω1

ω3

ω2

0.0 4.0 8.0 12.0
kxd

ω
. 1

0−
12
, s

-1

1.0

2.0

3.0

4.0

(a) (b)

Figure 2. Dispersion dependence for the infinite structure. εf = 5.5,
ωM = 3.11 · 1010 s−1, H0 = 2000 Oe, ε0 = 17.8, ωp = 1 · 1011 s−1, g = 2,
d1 = 0.02 cm, d2 = 0.005 cm.

The band structure of the spectrum is depicted in Fig. 2 [17].
For simplicity, we ignore the collision frequency in the semiconductor
layers and magnetic damping in the ferrite. The transmission bands are
indicated by hatching. It should be noted that close to the frequency
of ferromagnetic resonance (ω1) the optical width of the ferrite layers
(kz1d1) tends to infinity. It leads to the fast oscillations of trigonometric
functions in the Equation (1) and to the formation of numerous narrow
transmission bands (see Fig. 2(a)). In the frequency region ω1 < ω <
ω2 one transmission band can be highlighted. For kx → ∞ and ω → ω3

the width of the band tends to zero. The allowed bands for “dielectric”
modes take place above the characteristic frequencies (Fig. 2(b)). In
this frequency region the semiconductor layer permittivity and ferrite
layer permeability almost are not frequency-dependent.

3. REFLECTION AND TRANSMISSION COEFFICIENTS

In this section we present the analytical and numerical investigation of
the dependencies of the reflection and transmission coefficients upon
parameters of finite periodic ferrite-semiconductor structure.

To describe the finite-in-the z-direction periodic structure we use
the Abeles theory [20] and raise the transfer matrix m̂ for one period
(the components of this matrix are presented in appendix) to the N -th
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power (Ŝ = (m̂)N ):

S11 = m11
sin Nk̄d

sin k̄d
− sin (N − 1) k̄d

sin k̄d
,

S12 = m12
sin Nk̄d

sin k̄d
,

S21 = m21
sin Nk̄d

sin k̄d
,

S22 = m22
sin Nk̄d

sin k̄d
− sin (N − 1) k̄d

sin k̄d
.

(2)

Assume that kx = ω
c

√
εa sin θ, the transversal wave numbers for the

homogeneous media are kza = ω
c

√
εa cos θ and kzb =

√(
ω
c

)2
εb − k2

x,
θ is the angle of electromagnetic wave incidence. Using the boundary
conditions for tangential components of the electromagnetic field at
z = 0 and z = Nd, we arrive at the expressions for reflection and
transmission coefficients

R =
c
ωkzaS11 −

(
c
ω

)2
kzakzbS12 + S21 − c

ω kzbS22

c
ωkzaS11 −

(
c
ω

)2
kzakzbS12 − S21 + c

ω kzbS22

,

T =
2 c

ω kza exp (−ikzbNd)
c
ωkzaS11 −

(
c
ω

)2
kzakzbS12 − S21 + c

ω kzbS22

(3)

Let us determine the angle of full passage of electromagnetic
waves, for which the reflectance is equal to zero. The correspondent
incident angle is called the Bruster angle. Assume that the periodic
structure is placed into the vacuum εa = εb = 1. In this case |R|2 = 0
(|T |2 = 1) if Nk̄d = πq, q = 0,±1,±2 . . ., it implies that the Wolf-
Bragg resonance takes place; under this condition the layer thickness
is equal to an integer number of half-waves.

The transmittivity for the finite periodic structure, as a function
of the frequency, for different frequency ranges, is shown in Fig. 3. The
calculations were performed for 5 periods (N = 5), εa = εb = 1 (i.e.,
the uniform media are vacuum). The solid curves are for θ = π/3
and the dashed curves are for θ = π/6. The dependencies are not
monotonous, but the curves are similar. It can be seen that we get N−1
resonant points in each allowed band of the spectrum corresponding
to the Brewster’s frequencies.

The band spectrum of periodic structure is determined by the
magnetic field strength H0. Therefore, the reflection depends on the
frequency ωH . The dependencies |R|2 (H) at ω = 4 · 1010 s−1 (curve
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Figure 3. Transmissivity as a function of the frequency. εf = 5.5,
ωM = 3.11 · 1010 s−1, H0 = 2000 Oe, ε0 = 17.8, ωp = 1 · 1011 s−1, g = 2,
d1 = 0.02 cm, d2 = 0.005 cm.
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Figure 4. Reflectivity as a
function of an external magnetic
field (N = 20).
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Figure 5. Reflectivity as a
function of a frequency. θ = π/3,
N = 5, ωr = (1)0, (2)1.06 ·
108 s−1, (3)0, (4)1.06 · 108 s−1,
ν = (1)0, (2)0, (3)1010 s−1,
(4)1010 s−1.
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1) and ω = 5 · 1010 s−1 (curve 2) and at specified value θ = π/6 are
presented in Fig. 4. The magnetic field ranges of 70Oe < H0 < 1550 Oe
(curve 1) and 1300Oe < H0 < 2075 Oe (curve 2) correspond to the
allowed band for the electromagnetic wave. Outside of these ranges the
Bloch wave number is imaginary and, as a result, the trigonometrical
functions in (2) transform into the hyperbolic ones, and the reflectivity
oscillations do not take place. At frequencies ω > ωp, the reflection is
weakly dependent on the external magnetic field.

Here, we examine how the dissipative processes affect the
properties of the reflection and transmission (Fig. 5). Curve 1
corresponds to the nondissipative structure. It can be seen that when
the collisions are taken into account, the reflection in the forbidden
bands is less than unity, i.e., the energy penetration of the incident
wave into the structure occurs. The reason is that the wave numbers
of layers kz1,z2 and Bloch wave number k̄ are complex.

Figure 6 shows the reflectivity versus the wave incidence angle.
Different figures ((a) and (b)) correspond to the different frequencies.
Consider the influence of dielectric permittivities of homogeneous
media on the reflectivity and transmittivity of periodic magnetoactive
structure. Assume that εa = εb. In the allowed bands (Fig. 6(a))
the reflectivity is seen to increase with the dielectric permittivity of
homogeneous media. The penetration of the incident wave increases
with εa,b as well (Fig. 6(b)).
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Figure 6. Reflectivity as the function of an angle of an incident wave.
ω = (a) 5 · 1010 s−1, (b) 2 · 1011 s−1, εa = εb = (1)1, (2)12.
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4. TRANSMISSION SPECTRA OF THE STRUCTURE
WITH PERIODICITY BREAKDOWN

Now consider the layered periodic structure with one defect ferrite
layer. The parameters of defect ferrite layer do not coincide with
those of ferrite layers forming the periodic cell. We assume that the
periodicity-violating layer can have another saturation magnetization
MV or frequency ωMV , and another thickness dV . Let us assume that
N1 is the number of the periods at the left of the defect period, and
N2 is the number of the periods at the right of it. The frequency-
dependent transmittivity for θ = π/3 is presented in Fig. 7. The
dashed curve is for defectless periodic ferrite-semiconductor structure.
The simulation was carried out for a layered structure consisting 14
periods (N = 14) of alternating layers with the following parameters:
εf = 5.5, ωM = 3.11 · 1010 s−1, g = 2, ε0 = 17.8, ωp = 1 · 1011 s−1,
d1 = 0.02 cm, d2 = 0.005 cm, H0 = 2000 Oe. The frequency range in
Fig. 7 corresponds to the allowed band of defectless periodic structure.
The solid curve is for the defect structure that consists of a defect
period with periodicity-violating ferrite (εf = 5.5, ωMV = 5 · 1010 s−1

(ω1V = 5, 47·1010 s−1), g = 2, dV = d1) and semiconductor (parameters
of this layer coincide with the parameters of all semiconductor layers
of the structure) layers, N1 = 5, N2 = 8. It can be seen that the
defect structure has the point of full reflectance (|T |2 = 0) close to the
frequency of ferromagnetic resonance of defect ferrite layer ω1V . At
frequencies ω1V < ω < ω2V the transversal wave number of defect layer
is purely imaginary (k2

zV < 0), and the electromagnetic wave tunnel
through the layer. If the penetration depth of this wave is higher as
compared to the thickness of the periodicity-violating layer or equal
to it, then the defect structure transmittivity differ from that for a
defectless periodic system in that it has the additional resonance point.
The transmittivity in the resonance point decreases with increasing
defect layer thickness.

Consider the case where ωM > ωMV and the frequency of the
ferromagnetic resonance of the periodicity-violating layer belongs to
the forbidden band of defectless periodic structure (k̄2 < 0). Fig. 8
shows the transmittivity versus frequency at different number of
periods at the left and right of the defect layer (the whole number of
periods is constant). It can be seen that due to a resonance tunneling of
an electromagnetic wave through the defectless part of the structure,
a narrow transmittivity peak appears [5, 6]. The presence of defect
layers in the periodic structure causes the appearance of defect modes
in the forbidden bands.
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Figure 7. The frequency
dependence of transmittivity,
(ωM < ωMV ).
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Figure 8. The frequency depen-
dence of transmittivity (ωM >
ωMV , θ = π/3): N1 = 5 and
N2 = 8 (solid line), N1 = 8 and
N2 = 5 (dashed line).

5. FINE-STRATIFIED PERIODIC STRUCTURE

Let us investigate dispersion relation (1) for a fine-stratified medium,
i.e., let us assume that kz1, kz2 � 1. In this case, the dispersion
relation for a fine-layered composite is written as

k2
zμzz + k2

xμxx =
ω2

c2
μxxμzzε

∗, (4)

where μxx = d1μF +d2

d , μzz = μxxμ∗
zz

(μxx+αμ∗
zz) , μ∗

zz = dμF
d2μF +d1

, α =

d1d2
μF d2

(
μ⊥
μ||

)2
, ε∗ = d1εf +d2εyy

d . The Bloch wave number k̄ = kz is the
transverse wave vector of a bigyrotropic medium [16]. Let us assume
that kx = 0. In this case, the dispersion relation takes the form

k2
z =

ω2

c2
μ∗ε∗, (5)

where μ∗ = μxx. Fig. 9 shows how the effective permittivity ε∗ and
effective permeability μ∗ depend on the frequency. In Fig. 9(a), in the

frequency range ω1 < ω < ω4 (ω4 =
√(

ωH + ωM
d1
d

)
(ωH + ωM )), the

effective permeability μ∗ is negative. For ω < ω5 (ω5 = ωp
√

ε0d2√
ε0d2+εfd1

),



Progress In Electromagnetics Research M, Vol. 7, 2009 81

ε∗ < 0. Hence, for ω4 < ω5, in the frequency range ω1 < ω < ω4

we have the composite with the left-handed behavior. To control the
left-handed properties of the structure, we should change the external
magnetic field. It was considered the influence of dissipative processes
on the effective parameters of the ferrite-semiconductor structure
(Fig. 9(b)).
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Figure 9. The frequency dependencies of the effective parameters.
εf = 5.5, ωM = 3.11 · 1010 s−1, ε0 = 17.8, H0 = 2000 Oe, ωp =
1 · 1011 s−1, g = 2, d1 = 0.002 cm, d2 = 0.0005 cm.

The expressions for reflection and transmission coefficients take
form

R =
kzμxx cos kzL (kza − kzb) + i sin kzL

(
k2

z − kzakzbμ
2
xx

)
kzμxx cos kzL (kza + kzb) − i sin kzL (k2

z + kzakzbμ2
xx)

,

T =
2e−ikzbLkzkzaμxx

kzμxx cos kzL (kza + kzb) − i sin kzL (k2
z + kzakzbμ2

xx)
.

(6)

The transmittivity for the finite fine-stratified periodic structure as a
function of the frequency is shown in Fig. 10. The calculations were
performed for 50 periods (L = 0.125 cm), εa = εb = 1. The solid curve
is for normal incidence (θ = 0) and the dashed one is for θ = π/3.

The analysis of formulas (6) for the case of normal incidence
allows us to obtain the additional point of full transmittance, when
the condition εa = ε∗

μ∗ takes place. Maximum of the transmittivity
at frequency ω = 5.06 · 1010 s−1 (solid curve) is connected with an
implementation of this condition. The rest of the maximums are
explained by Wolf-Bragg resonances. The minimum value of the
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Figure 10. Transmissivity as a function of the frequency. εf = 5.5,
ωM = 3.11 · 1010 s−1, H0 = 2000 Oe, ε0 = 17.8, ωp = 1 · 1011 s−1, g = 2,
d1 = 0.002 cm, d2 = 0.0005 cm, N = 50.

transmittivity for θ = π/3 (dashed curve) corresponds to the case,
where μxx = 0 (ω = ω1 = 4.84 · 1010 s−1 and ω = ω5 = 6.31 · 1010 s−1).

6. CONCLUSION

In summary, we have presented the transmission spectra of
electromagnetic waves which propagate through a layered periodic
ferrite-semiconductor structure. We have studied peculiarities of bulk
waves in such a structure. The effect of dissipation in the layers
on the reflectivity (transmittivity) of electromagnetic waves has been
examined. It has been shown that by analyzing the frequency, angle
of incidence, and magnetic field dependencies of the reflectivity or
transmittivity one can determine the geometrical as well as physical
parameters of the layers composing the structure. The results of
our investigations can be used in the implementation of variety of
microwave and optical devices.
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APPENDIX A.

Components of the transfer matrix for one period of the ferrite-
semiconductor structure:

m11 = cos kz1d1 cos kz2d2 − kz2

kz1
μF sin kz1d1 sin kz2d2

+ i
kx

kz1

μ⊥
μ||

sin kz1d1 cos kz2d2,

m12 = i
ω

c

(
1

kz2
cos kz1d1 sin kz2d2 +

μF

kz1
sin kz1d1 cos kz2d2

+ i
kx

kz1kz2

μ⊥
μ||

sin kz1d1 sin kz2d2

)
,

m21 = i
c

ω

(
1

μF

(
− k2

x

kz1

(
μ⊥
μ||

)2

+ kz1

)
sin kz1d1 cos kz2d2

+ kz2 cos kz1d1 sin kz2d2 − ikx
kz2

kz1

μ⊥
μ||

sin kz1d1 sin kz2d2

)
,

m22 = − 1
μF

1
kz2

(
− k2

x

kz1

(
μ⊥
μ||

)2

+ kz1

)
sin kz1d1 sin kz2d2

+ cos kz1d1 cos kz2d2 − i
kx

kz1

μ⊥
μ||

sin kz1d1 cos kz2d2.
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