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Microwave Laboratory
Semiconductor Physics Institute
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Abstract—A resistive sensor (RS) devoted for high power microwave
pulse measurement in cylindrical waveguide is considered. The
modeling results of the interaction of the TE01 (H01) wave with a
semiconductor plate with contacts on sidewalls of the plate placed on
a wall of the circular waveguide are presented. A finite-difference
time-domain (FDTD) method was employed for the calculation of
the electromagnetic field components, reflection coefficient from the
semiconductor obstacle, and the average electric field in it. The
features of the resonances have been used to engineer the frequency
response of the RS. It has been found that such electrophysical
parameters of the plate can serve as the prototype of the sensing
element (SE) for the circular waveguide RS with flat frequency
response.

1. INTRODUCTION

At present, different types of pulsed high power microwave (HPM)
oscillators and amplifiers are being researched in laboratories, as
well as manufactured by industry. They are used in communication
systems, radars, electromagnetic testing facilities, scientific research,
and military projects. Currently, the main device being used for the
measurement of HPM pulse power is a semiconductor diode. However,
when it is used to measure HPM pulses, the initial pulse has to be
strongly attenuated. Large attenuation of the microwave power results
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in a decrease of the measurement accuracy. In addition, the size and
weight of the measurement system increase, and its control becomes
complicated.

An alternative device for the HPM pulse measurement — the
RS, performance of which is based on the electron heating effect in
semiconductors, has been developed in [1]. The electric field of the
microwave pulse heats electrons in the SE placed in the waveguide,
and its resistance increases. By measuring this resistance change the
microwave pulse power in the transmission line is determined. The
RS can measure HPM pulses directly, produces high output signal, is
overload resistant, and demonstrates very good long term stability [1].
The RS developed for rectangular waveguides are used in laboratories
dealing with HPM pulses worldwide. Unfortunately, so far as we know,
the RS for the circular waveguide has not been designed yet, and it is
the object of our investigation.

Although the TE01 mode propagating in circular waveguide is not
the lowest one, it is used in the design of microwave devices because
it is a mode, whose losses decrease with increasing frequency [2].
The low-loss TE01 mode in circular waveguide has been utilized
for several decades. It was used in several applications including
communication systems, antenna feeds and RF systems for high-energy
accelerators [3]. The currents associated with TE01 modes are in
the circumferential direction only, and this property can be used to
construct mode filters [2]. For example, a novel circular TE01 mode
bend for HPM applications is presented in [3]. The bend has very low
ohmic losses, and the TE01 mode is transmitted with virtually perfect
mode purity. The characteristics of a 35-GHz oscillator operating
with the TE01 circular waveguide mode are described in [4]. The
gyrotron was specially designed as a source for electron cyclotron
heating experiments.

The main goal of this paper was to investigate the interaction
of the electromagnetic wave, propagating in the circular waveguide,
with the n-Si plate placed on the waveguide wall and to find such
electrophysical parameters of the plate that it could serve as the
prototype of the SE for the circular waveguide RS for TE01 mode that
is used in HPM experiments.

2. THE RESISTIVE SENSOR IN A CIRCULAR
WAVEGUIDE

A plate with the contacts on sidewalls of the plate in the circular
waveguide was analyzed in this paper. The practical realization of the
design of the SE is depicted in Fig. 1(a). It is seen that the SE is simply
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(a) (b)

Figure 1. The practical realization of the SE in the circular waveguide
(a) and its model in a cylindrical coordinate system (b).

laid on the isolating dielectric on the wall of the waveguide. One of the
contacts of the SE is grounded, while the other one is isolated from
the waveguide and is used for the RS feeding and the output signal
measurement. Cross-sectional view of the investigated structure in a
cylindrical coordinate system is shown in Fig. 1(b). In the model of
the SE the metal contacts are perpendicular to the direction of the
electric field Eϕ in the regular wave.

The main requirements for the SE could be formulated as follows:
first, the SE should not insert considerable reflection in the waveguide,
so the value of VSWR has been set at <1.2; second, the RS should be
able to measure nanosecond-duration HPM pulses; therefore, the DC
resistance of the RS should not exceed 50 Ω; third, the shape of the SE
should be taken as a plate that is important for heat transfer from the
SE; finally, the flat frequency response of the RS in the waveguide’s
frequency band is preferable.

2.1. FDTD Method

We have used the FDTD method for the calculation of the
electromagnetic field components [5, 6]. The advantages of FDTD
method are accented in [7, 8]; it was mentioned that FDTD is widely
regarded as one of the most popular computational electromagnetics
algorithms. In [9–15], FDTD method was applied to compute the
propagation characteristics of cylindrical transmission lines.

The modeled section of the waveguide with the SE analyzed in
this paper is shown in Fig. 2. We used a cylindrical coordinate system
and dimensionless coordinates and time: r/a, z/a, t·c/a where c is
the velocity of light in free space and a is a radius of the waveguide.
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(a) (b)

Figure 2. The sectional view of the modeled circular waveguide with
obstacle in x0z plane (a) and x0y plane (b).

In the plane z =zex, the TE01 type wave is excited. It propagates
into both sides from the excitation plane. The obstacle is placed at
one wavelength in the waveguide ahead from the excitation plane and
at the same distance before the right side of the modeled waveguide
section. In the planes z = 0 and z = zmax non reflecting absorbing
boundary conditions are satisfied. Therefore, the waves traveling left
from the excitation plane as well as reflected from the semiconductor
obstacle are absorbed in the plane z = 0, whereas the wave passing the
semiconductor structure is absorbed in the plane z = zmax. Due to the
reflection from the semiconductor obstacle the partly standing wave
is formed between planes z = zex and z = zob. From the amplitude
distribution in this area, the reflection coefficient was determined.

The cutoff frequency of the TE01 mode propagating in the circular
waveguide is twice of that for the lowest TE11. The regular TE01

wave has only three components: Eϕ, Hr and Hz [16]. However, in a
vicinity of the SE all electromagnetic field components might appear.
Therefore, Maxwell’s equations have to be solved by computing all
six components of the electric and magnetic fields to determine the
average electric field amplitude in the semiconductor obstacle. Using
dimensionless variables and measuring up the magnetic field strength
in electric field units Z0H, where Z0 is an impedance of free space,
Maxwell’s equations in the semiconductor obstacle can be written in
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the following way

∂E
∂t

= (∇× H − γ · E)/εr, (1)

∂B
∂t

= −(∇× E). (2)

There γ = Z0·a·ρ accounts for losses in the structure. Here ρ and
εr are the specific resistance and relative dielectric constant of the
semiconductor obstacle; it was assumed that μr = 1 for the entire
simulation area. Outside the obstacle γ = 0 and εr = 1.

The grid of points where the particular component is computed is
shifted at a half of a step with respect to each other as it was proposed
in [5]. Moreover, electric and magnetic fields are calculated at different
time moments providing h2 accuracy in the calculation both space and
time derivatives. The details of the application of this technique to the
cylindrical coordinate system can be found in the monograph [6].

The grid can be chosen in such a way that it starts and
finishes with the points where the electric field components should
be calculated. For the investigated frequency range real metals
can be sufficiently precisely simulated using so called perfect electric
conductor approximation, which assumes that tangential electric field
components are simply zeroed on the metal surface. Therefore, the
components Eϕ and Ez are zeroed on the waveguide walls. Also, the
grid has been chosen in such a way that tangential electromagnetic
field components were located in the contact plane and therefore zeroed
during FDTD update. For configuration of the SE investigated here,
Er and Ez components of the electric field are set to zero on the metal
contacts. In the planes z = 0 and z = zmax non reflecting boundary
conditions for the components Er and Eϕ are satisfied.

At t ≤ 0 there are no electromagnetic fields in the modeled
section of the waveguide; therefore all components of the electric
and magnetic field are set to zero. When the dimensions of the
semiconductor obstacle is much less than the characteristic dimensions
of the waveguide, its influence on the wave propagating in the
waveguide is comparatively small. In such a case, the stationary
solution is achieved faster when the waveguide is filled with ordinary
components of the TE01 wave. Choosing the time step Courant
criterion formulated for 3-D cylindrical coordinate FDTD procedure
in [10] has to be taken into account.

Some of the components of the electromagnetic field, namely Hr,
Eϕ, and Ez, cannot be straightforwardly computed at i = 0 (r = �r ·i,
where �r is the cylindrical coordinate step and i is step number.
This fact is known as the numerical singularity of a FDTD scheme in
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cylindrical coordinates at r = 0 [6]. A variety of numerical procedures
dealing with the singularity have been proposed. More widely an
integral form of Maxwell equations near r = 0 [11, 12] and the series
polynomial expansion in the radial direction [13, 14] have been used to
resolve the problem. We have followed the simple method proposed
in [15] and based on the use of the Cartesian coordinate system in the
vicinity of r = 0.

The program computing the electromagnetic field components
was written using C++ programming language. The suitability of
the program has been proved in [17] where computations results were
tested by comparing ones with the analytical solution.

2.2. Sensitivity

We consider a sensitivity of the RS in the linear region where the
output signal is proportional to the pulse power P propagating in
the waveguide. Since the resistance change of the SE is the quantity
indicating pulse power in the waveguide, it is convenient to define the
sensitivity of the RS as

ζ =
ΔR/R

P
=

β∗〈E〉2
P

. (3)

There ΔR/R is a relative resistance change of the SE in the microwave
electric field; β∗ is an effective warm electron coefficient defining
deviation of the current-voltage characteristic from Ohm’s law [1]; and
〈E〉 is an average of the electric field amplitude in the SE.

Inserting into (3) the expression defining power propagating in the
circular waveguide one can get the following expression, describing the
sensitivity of the RS in the linear region:

ζ =
2β∗

πa2

[
J1(χ11)
J0(χ01))

]2 Z0√
1 − (fc/f)2

(〈E〉
E0

)2

, (4)

where f and fc are the frequency of electromagnetic oscillations and
the cutoff frequency for the TE01 mode, respectively; J0 and J1 are the
corresponding order first kind Bessel functions; χ01 = 3.832 is the root
of J1; χ11 = 1.841 is its first derivative root; and E0 in the obtained
expression denotes the maximum of the electric field amplitude in the
regular TE01 wave in the empty waveguide.

Making use of the empirical relation [1] to describe the resistance
change of the SE over a wider range of electric field, the following
expression can be obtained relating relative resistance change with
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pulse power transmitted through the waveguide:

ΔR

R
=

1
2k∗

n

⎡
⎢⎣

√√√√1 +
8k∗

nβ∗

πa2

[
J1(χ11)
J0(χ01))

]2 Z0 · P√
1 − (fc/f)2

〈E〉2
(E0)2

− 1

⎤
⎥⎦ ,

(5)
where additional coefficient k∗

n describes the deviation of ΔR/R from
quadratic dependence. In the limit P → 0, (5) expression goes over
into (4).

The average electric field is the only unknown quantity in (4) and
(5). Thus determining it the sensitivity of the RS in the linear region
and the dependence of ΔR/R on power in a wider dynamical range
can be calculated.

3. NUMERICAL RESULTS AND DISCUSSION

Calculations were performed for the circular waveguide radius of
which a = 20 mm, the electric field amplitude was normalized to the
maximum of the electric field amplitude of the regular wave in the
empty waveguide E0.

3.1. Resonances

Although the dimensions of the SE are much less than the wavelength
of the electromagnetic oscillations, due to large value of εr = 11.9
some resonance phenomenon may occur in it. We have analyzed the
influence of the length l, height h and width d of the dielectric SE
on the resonance position by changing one of the dimensions of the
obstacle while the other dimensions were fixed.

The usual resonance shift to the lower frequency was obtained
when the length l of the SE is growing, because the larger wavelength
wave fits the increased length of the sample. Calculated dependencies
of the average electric field component Eϕ in the dielectric obstacle
on frequency for the different height h and width d of obstacles are
presented in Fig. 3. It is seen (ref. to Fig. 3(a)) that the increase
of height h leads to the significant shift of the resonance to lower
frequencies, while the increase of the width d (ref. to Fig. 3(b)) does
not influence much resonance position. The Eϕ is the major electric
field component in the SE of such configuration. The height is the
transverse dimension of the SE with respect to the direction of the
electric field in this case. It is seen that the greatest influence on the
resonance position has the dimension that is transverse with respect to
the direction of the electric field dominating in the SE. Let us recall that
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(a) (b)

Figure 3. Calculated dependencies of the average electric field
component Eϕ in the dielectric obstacle on frequency for the different
height h (d×l=3.6×5.5 mm2) (a), and width d (h×l=4.0×5.5 mm2)(b)
of the obstacles. The positions of the resonance are specified in the
figure.

the same peculiarity is the characteristic of the lowest TE wave TE10

in the rectangular waveguide. For example, the critical wavelength
depends only on the transverse dimension of the waveguide window.
It is worth noting that the position of the resonance in the frequency
scale for the SE investigated here can be easily shifted by changing
either the length or the height of the obstacle while the average electric
field in it can be adjusted by changing specific resistance of the SE.

3.2. Electric Field Strength in SE

We started investigations from the smallest devices, where the influence
of resonances can be avoided. Only very small amplitudes can
be expected in high loss (ρ = 2 Ω·cm) case. Situation is slightly
improved for ρ = 20 Ω·cm, since the amplitude increases by a factor
of four approximately. However, the resistance of the RS increases to
almost 100 Ω in this case that is substantially above the 50 Ω target.
In addition, due to the boundary condition for the tangential field
component near the metal surface Eϕ should be zero on the waveguide
wall. This substantially decreases the average electric field strength in
the SE. During our investigations, we faced with the problem for all
simulated smallest devices — there was no sufficient average electric
field growth with frequency to compensate the sensitivity decrease
caused by the wave dispersion in the waveguide (ref. to (4)). Therefore,
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Table 1. The average electric field components for the different
height SE. Dimensions of the SE: d × l = 1.8 × 2 mm2, ρ = 20 Ω·cm,
f = 10.2 GHz.

h = 2 mm h = 4mm h = 6 mm
〈Er〉 0.0009 0.0014 0.0011
〈Eϕ〉 0.2133 0.0950 0.0274
〈Ez〉 0.0005 0.0010 0.0010

Figure 4. Calculated dependence of the sensitivity on frequency for
the optimal RS. Dimensions of the SE are h×d× l = 4×2.7×4.5 mm3,
ρ = 20 Ω·cm, a = 20 mm.

in order to obtain the optimized sensor substantially larger than
2mm devices should be investigated. In this case, resonances can
be constructively applied to “fix” the decrease of the sensitivity on
frequency and increased l and h dimensions which lead to the decrease
of the resistance of the RS at a fixed specific resistance.

We have also considered the dependence of the average electric
field in the SE on its size and specific resistance. The increase of width
of the SE has little influence on the amplitude of 〈Eϕ〉 while the average
electric field of the other two components increases. The growth of the
height of the SE leads to the decrease of 〈Eϕ〉. Results illustrating it
are collected in Table 1. It is seen that 〈Eϕ〉 decreases 7.8 times when
the height of the SE was tripled.
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Figure 5. Distribution of the components of electric field in the
waveguide with the optimal SE on the different surfaces ϕ0z: Eϕ at
f = 10.1 (a) and 14.7 GHz (b) for r = (i − 1) · Δr; Er at f = 10.1
(c) and 14.7 GHz (d) for r = (i − 0.5) · Δr; Calculation parameters:
Δr = 0.025, Δz = 0.025, Δϕ = 1.4◦, Δt = 3.05 · 10−4. Dimensions of
the SE are h × d × l = 4 × 2.7 × 4.54 mm3, ρ = 20 cm, a = 20 mm.

3.3. Optimized Frequency Response

Resonance investigation results presented in Fig. 3 suggest that for
height h = 4 mm the length l = 5.5 mm is too large because the
resonance occurs at ∼12 GHz. For our purposes it is better to get
resonance at 13 GHz, or even above. Since the change of the width
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does not influence the position of the resonance (ref. to Fig. 3(b)), one
can shift the resonance to higher frequency by decreasing the length or
the height of the SE. Unfortunately decrease of both l and h leads to
the increase of the resistance of the sensor; therefore some compromise
should be found. Considering factors influencing the resonance position
it was found that an optimum resonance position can be obtained
for the relatively short sample the length of which l ≤ 5mm. After
estimating the optimum device size, several sets of simulations have
been performed for similar sizes in order to determine the optimum
specific resistance of the SE material.

Since the circular waveguide with TE01 mode is sometimes
employed at a frequency close to cutoff frequency, let us consider
frequency range fc/f = 0.9 - 0.7. From (4) it is easy to get that the
sensitivity in this frequency range decreases by a factor of 1.64. The
increase of 〈Eϕ〉 by a factor 1.28 is needed to compensate the decrease
of the sensitivity due to wave dispersion in the waveguide. It turned
out that the best results can be obtained for ρ = 20 Ω·cm material.
The ratio of the average electric field amplitude 〈Eϕ〉 at f = 13.1 GHz
to the 〈Eϕ〉 calculated at f = 10.2 GHz was determined for h = 4mm
and for various l and d. From the calculation results, optimum ratio
demonstrates the SE with transverse dimensions d × l = 3.5 × 5 mm2.
It was obtained that the sensitivity variation of the RS was ±5%
within considered frequency range. Unfortunately, at higher frequency,
sensitivity sharply decreases due to the decrease of the electric field
strength in the SE with frequency. Therefore as an optimal device we
choose the SE with the transverse dimensions d × l = 2.7 × 4.5 mm2

that demonstrates flat frequency response in a wider frequency range.
Its DC resistance is roughly 29 Ω. The calculated dependence of
the sensitivity on frequency is shown in Fig. 4. The value of β∗ =
9.3 · 10−8 cm2/V2 [1] was used in the calculations. The sensitivity
variation within frequency range 10.1–14.7 GHz is ±11%. It is the
best result found now for the RS analyzed here. Although the height
of the optimal SE is quite high, the RS does not perturb much the
field distribution in a waveguide away from the RS. Calculated VSWR
is practically independent of frequency and is lower than 1.05 within
considered frequency range. The distribution of the components Eϕ

and Er in the waveguide with the optimal SE for the lowest and
highest considered frequencies are shown in Fig. 5. In the figure, the
distribution of the components on the surfaces ϕ0z is presented within
all modeled waveguide section. As one can see from the figure, the
obstacle distorts the regular distribution of Eϕ component of the TE01

wave. The largest perturbation is found on the surfaces closest to the
obstacle. In the figure, the component Er is excited in all modeled
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Figure 6. Calculated dependence of the relative resistance change of
the optimal RS on power transmitted through the waveguide at f =
12 GHz. Dimensions of the SE are h×d×l = 4×2.7×4.5 mm3, ρ = 20
Ω·cm.

waveguide section. However, its amplitude is very small in the central
part of the waveguide. It becomes significant only near the obstacle.
Comparing results presented in Fig. 5(c) and Fig. 5(d), one can see
that the amplitude of Er increases with frequency. It is worthwhile
mentioning that the average electric field in the optimal SE mostly
consists of the Eϕ component. The Eϕ increases from 0.07 to 0.1 in
the considered frequency range. Average value of Er is roughly 40
times, and Ez is more than 50 times less.

Once the electric field in the SE is determined the dependence
of the relative resistance change on a power transmitted through the
waveguide can be calculated using (5). The value of k∗

n = 3.4 was
used in calculations [1]. The results are shown in Fig. 6 by a solid
line. Dotted line corresponds to the linear dependence of ΔR/R on P
that is characteristic of the warm electron region. It is seen that at a
maximum power roughly 20% relative resistance change of the SE is
observed.

Considering fitting of the frequency response in general, even
better theoretical result may be expected for the precisely “tuned”
d dimension. However, the differences between idealized and real
devices should be considered before proceeding with fine-tuning of the
parameters of the SE.

4. CONCLUSION

Our investigations have revealed that resonance phenomenon may
occur even in sufficiently small obstacles placed in the cylindrical
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waveguide. By shifting the resonance position the frequency response
of the RS has been optimized. The optimal RS found at a moment
should have the following electrophysical parameters: ρ/a = 10 Ω,
h/a×d/a×l/a = 0.2×0.135×0.225. Calculated sensitivity variation
within frequency range fc/f = 0.9 - 0.62 for the optimal RS is roughly
±11%, where fc is the cutoff frequency for TE01 mode. Low DC
resistance of 29 Ω is favorable for the impedance matching in the
measurement circuit and sensor introduces only small reflections in the
waveguide since its VSWR < 1.05 within the investigated frequency
range.
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tion of the averaged electric field in the semiconductor obstacle
placed in the coaxial line,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 4, 447–460, 2006.

10. Chen, Q. and V. Fusco, “Three dimensional cylindrical coordinate
finite difference time domain analysis of curved slot line,” 2nd Int.
Conf. Computations in Electromag., 323–326, U.K., 1994.

11. Chen, Y., R. Mittra, and P. Harms, “Finite-difference time-
domain algorithm for solving Maxwell’s equation in rotationally
symmetric geometries,” IEEE Trans. Microwave Theory Tech.,
Vol. 44, No. 6, 832–839, 1996.

12. Dib, N., T. Weller, M. Scardeletti, and M. Imparato, “Analysis
of cylindrical transmission lines with the finite-difference time-
domain method,” IEEE Trans. Microwave Theory Tech., Vol. 47,
No. 4, 509–512, 1999.

13. Trakic, A., H. Wang, F. Liu, H. S. Lpez, and S. Crozier, “Analysis
of transient eddy currents in MRI using a cylindrical FDTD
method,” IEEE Trans. Appl. Supercond., Vol. 16, No. 9, 1924–
1936, 2006.

14. Liu, F. and S. Crozier, “An FDTD model for calculation of
gradient-induced eddy currents in MRI system,” IEEE Trans.
Appl. Supercond., Vol. 14, No. 9, 1983–1989, 2004.
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