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SCATTERING OF ELECTROMAGNETIC RADIATION
BY A COATED PERFECT ELECTROMAGNETIC CON-
DUCTOR SPHERE

R. Ruppin
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Abstract—An analytic theory for the electromagnetic scattering
from a coated perfect electromagnetic conductor (PEMC) sphere is
developed. The sphere is characterized by its M parameter, and the
coating material by its permittivity and permeability, which may attain
arbitrary values, including negative ones. The theory is applied to the
calculation of various scattering cross sections. It is found that the
scattered fields contain cross polarized components, which do not exist
in the case of a coated perfect electric conductor (or perfect magnetic
conductor) sphere. Symmetry properties of the solutions, which reflect
a generalized form of electric-magnetic duality, are demonstrated.

1. INTRODUCTION

The perfect electromagnetic conductor has recently been introduced
as a generalization of the perfect electric conductor (PEC) and the
perfect magnetic conductor (PMC) [1]. At the surface of a PEMC the
boundary conditions are

�n ×
(

�H + M �E
)

= 0 (1)

�n ·
(

�D − M �B
)

= 0 (2)

where �n is the unit normal, and the admittance like parameter M
characterizes the PEMC. For M = 0, the PMC case is retrieved, and
the limit M → ±∞ corresponds to the PEC case. A PEMC material
acts as a perfect reflector of electromagnetic waves, but differs from
the PEC and the PMC in that the reflected wave has a cross-polarized
component. The implications of this non-reciprocal effect have been
demonstrated for the planar geometry [1, 2], for a cylinder [3] and
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for a sphere [2, 4, 5]. The problem of the scattering by a PEMC
sphere was first treated analytically in the small size limit [2], and
later a general analytic Mie type solution for arbitrary sphere size
was developed [4]. A numerical method for calculating the scattering
properties of a PEMC sphere, using the electric field integral equation,
has been applied by Sihvola et al. [5].

Here we investigate how the scattering properties of a PEMC
sphere are modified when it is coated with a dielectric layer. The
permittivity and the permeability of the coating material can have
arbitrary values, including negative ones. Thus, the theory presented
here can be applied to plasmonic or metamaterial coatings. These
types of coatings have recently been the subject of many investigations
concerning the possibility of achieving electromagnetic cloaking of
scattering objects [6–8].

2. SCATTERING THEORY FOR COATED PEMC
SPHERE

We consider the geometry of a PEMC sphere of radius a, which is
coated by a spherical shell, so that the external radius is b. The
permittivity of the shell material is ε1 = εrε0 and its permeability
is μ1 = μrμ0, where ε0 and μ0 are the free space permittivity and
permeability, respectively. The electromagnetic fields will be expanded
in terms of the spherical vector wave functions [9]

�M (i)
σmn = �∇× [�r Yσmn(θ, ϕ)zn(kr)] (3)

�N (i)
σmn =

1
k

�∇× �M (i)
σmn (4)

Here spherical coordinates (r, θ, ϕ) are used, and the subscript σ stands
for e (even) or o (odd), according to whether cos mφ or sinmφ is used
when multiplying by the associated Legendre polynomial Pm

n (cos θ) in
order to obtain the spherical harmonic Yσmn(θ, ϕ). The wavenumber
k is given by k1 = ω

√
ε1μ1 inside the coating, and by k0 = ω

√
ε0μ0

outside it. The superscript i specifies the choice of the radial function
zn(kr). For i=1 this is a spherical Bessel function jn(kr), for i = 2 a
spherical Neumann function nn(kr), and for i = 3 a spherical Hankel
function hn(kr). A plane wave of frequency ω, propagating in the z
direction, with the electric field polarized in the x direction, is incident
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on the sphere. The expansion of the incident field is given by [10]

�Ei = E0

∞∑
n=1

in
2n + 1

n(n + 1)

(
�M

(1)
o1n − i �N

(1)
e1n

)
(5)

�H i = −(E0/η0)
∞∑

n=1

in
2n + 1

n(n + 1)
( �M

(1)
e1n + i �N

(1)
o1n) (6)

where η0 =
√

μ0/ε0.
The scattered field in the region r > b is expanded in the form

�Es= E0

∞∑
n=1

in
2n + 1

n(n + 1)

(
as

n
�M

(3)
o1n + cs

n
�M

(3)
e1n − ibs

n
�N

(3)
e1n − ids

n
�N

(3)
o1n

)
(7)

�Hs= −(E0/η0)
∞∑

n=1

in
2n+1

n(n+1)

(
bs
n

�M
(3)
e1n+ds

n
�M

(3)
o1n+ias

n
�N

(3)
o1n+ics

n
�N

(3)
e1n

)
(8)

In the standard Mie type scattering theory only the coefficients as
n and

bs
n are needed in the scattered field expansion. Since in the PEMC

boundary conditions (1) and (2) a mixing of �E and �H occurs, the
coefficients cs

n and ds
n have to be added. These represent the cross-

polarized components of the scattered field. The fields inside the
coating are expanded in the form

�Et = E0

∞∑
n=1

in
2n + 1

n(n + 1)
(at1

n
�M

(1)
o1n + at2

n
�M

(2)
o1n + ct1

n
�M

(1)
e1n + ct2

n
�M

(2)
e1n

−ibt1
n

�N
(1)
e1n − ibt2

n
�N

(2)
e1n − idt1

n
�N

(1)
o1n − idt2

n
�N

(2)
o1n) (9)

�Ht = −(E0/η1)
∞∑

n=1

in
2n+1

n(n+1)
(bt1

n
�M

(1)
e1n+bt2

n
�M

(2)
e1n+dt1

n
�M

(1)
o1n+dt2

n
�M

(2)
o1n

+iat1
n

�N
(1)
o1n + iat2

n
�N

(2)
o1n + ict1

n
�N

(1)
e1n + ict2

n
�N

(2)
e1n) (10)

where η1 =
√

μ1/ε1.
We now apply the boundary conditions at the interfaces. At r = a

the tangential field components have to satisfy the boundary condition

Ht
t + MEt

t = 0 (11)

At r = b the usual Maxwell boundary conditions of the continuity
of the tangential components of the electric and magnetic fields are
applied:

Ei
t + Es

t = Et
t (12)

H i
t + Hs

t = Ht
t (13)
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Applying the boundary conditions (11)–(13) and using the orthogo-
nality properties of the angular functions we obtain the system of six
linear equations

bt1
n jn(k1a) + bt2

n nn(k1a) − ct1
n Mη1jn(k1a) − ct2

n Mη1nn(k1a) = 0 (14)
bt1
n Mη1 [k1ajn(k1a)]′ + bt2

n Mη1 [k1ann(k1a)]′ + ct1
n [k1ajn(k1a)]′

+ct2
n [k1ann(k1a)]′ = 0 (15)

ct1
n jn(k1b) + ct2

n nn(k1b) − cs
nhn(k0b) = 0 (16)

bt1
n

1
k1b

[k1bjn(k1b)]
′ + bt2

n

1
k1b

[k1bnn(k1b)]
′ − bs

n

1
k0b

[k0bhn(k0b)]
′ =

1
k0b

[k0bjn(k0b)]
′ (17)

bt1
n η0jn(k1b) + bt2

n η0nn(k1b) − bs
nη1hn(k0b) = η1jn(k0b) (18)

ct1
n

η0

k1b
[k1bjn(k1b)]

′+ct2
n

η0

k1b
[k1bnn(k1b)]

′−cs
n

η1

k0b
[k0bhn(k0b)]

′=0(19)

for the six coefficients bt1
n , bt2

n , ct1
n , ct2

n , bs
n and cs

n. Here the primes
denote differentiation with respect to the arguments of the spherical
functions.

Furthermore, the system of six linear equations

at1
n Mη1jn(k1a) + at2

n Mη1nn(k1a) − dt1
n jn(k1a) − dt2

n nn(k1a) = 0 (20)
at1

n [k1ajn(k1a)]′ + at2
n [k1ann(k1a)]′ + dt1

n Mη1 [k1ajn(k1a)]′

+dt2
n Mη1 [k1ann(k1a)]′ = 0 (21)

dt1
n η0jn(k1b) + dt2

n η0nn(k1b) − ds
nη1hn(k0b) = 0 (22)

at1
n jn(k1b) + at2

n nn(k1b) − as
nhn(k0b) = jn(k0b) (23)

at1
n

η0

k1b
[k1bjn(k1b)]

′ + at2
n

η0

k1b
[k1bnn(k1b)]

′ − as
n

η1

k0b
[k0bhn(k0b)]

′ =

η1

k0b
[k0bjn(k0b)]′ (24)

dt1
n

1
k1b

[k1bjn(k1b)]
′+dt2

n

1
k1b

[k1bnn(k1b)]
′−ds

n

1
k0b

[k0bhn(k0b)]
′=0(25)

for the six coefficients at1
n , at2

n , dt1
n , dt2

n , as
n and ds

n is obtained.
Once the expansion coefficients are obtained by numerically

solving the two linear systems (14)–(19) and (20)–(25), the various
cross sections can be calculated from the radial component of the
complex Poynting vector. Integrating over a large sphere, as in the
standard Mie theory [10], the extinction cross section of the coated
sphere, in units of the geometric cross section of the PEMC sphere, is
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found to be given by [4]

Qe = − 2
ρ2

∞∑
n=1

(2n + 1)Re (as
n + bs

n) (26)

where ρ = k0a is the size parameter of the PEMC sphere. The
scattering cross section is given by

Qs =
2
ρ2

∞∑
n=1

(2n + 1)
(
|as

n|2 + |bs
n|2 + |cs

n|2 + |ds
n|2

)
(27)

The following expressions are obtained for the radar cross section, and
the forward scattering cross section, respectively:

σ(180◦) =
(

2
ρ

)2
⎡
⎣

∣∣∣∣∣
∞∑

n=1

(−1)n(n +
1
2
)(bs

n − as
n)

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

n=1

(−1)n(n +
1
2
)(cs

n + ds
n)

∣∣∣∣∣
2
⎤
⎦ (28)

σ(0◦) =
(

2
ρ

)2
⎡
⎣

∣∣∣∣∣
∞∑

n=1

(n+
1
2
)(bs

n+as
n)

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

n=1

(n+
1
2
)(cs

n−ds
n)

∣∣∣∣∣
2
⎤
⎦(29)

In Eqs. (27)–(29) the sums containing as
n and bs

n represent the
contribution of the co-polarized scattered fields, while those containing
cs
n and ds

n give the contribution of the cross polarized scattered fields.

3. NUMERICAL RESULTS AND DISCUSSION

We have performed a large number of numerical calculations for
various sphere sizes, M values, coating thicknesses, and coating
permittivity and permeability. From the results of these calculations
some interesting conclusions concerning the polarization and symmetry
properties of the solutions can be drawn.

(1) For real εr and μr the relations

Re(as
n) = −(|as

n|2 + |ds
n|2) (30)

Re(bs
n) = −(|bs

n|2 + |cs
n|2) (31)

are found to be always valid. From (26) and (27) it follows that the
extinction cross section is equal to the scattering cross section. Thus,
the absorption cross section, given by the difference between the two,
is equal to zero. This is a manifestation of the fact that the PEMC
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sphere is totally reflecting, so that no losses occur inside it, and for
real εr and μr no losses occur in the coating.

(2) The relation cs
n = ds

n is found to be always valid. From (29), it
follows that there exists no cross polarized component in the forward
direction.

(3) For given sphere and coating sizes and an impedance matched
coating, i.e., εr = μr, it is found that the sum as

n + bs
n is independent

of M . From (26) and (29), it follows that the extinction cross
section and the forward scattering cross section are independent of M .
Furthermore, it is found that the total radar (backscattering) cross
section (RCS) is independent of M .

(4) The relation as
n = bs

n is found to hold when the following two
impedance matching conditions are satisfied: (a) The coating material
has the symmetry property εr = μr; (b) The M parameter of the
PEMC material is equal to 1/η0. From (28) it follows that in this case
there exists no co-polarized component in the backward direction, but
a cross-polarized component does exist. This is a generalization of the
known theorem that the backscattering from an impedance matched
dielectric sphere is equal to zero [11].
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Figure 1. The RCS of a PEMC sphere of size parameter ρ = 3.
(a) Total RCS; (b) Co-polarized contribution to the RCS; (c) Cross
polarized contribution to the RCS.
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We now present some numerical results which demonstrate the
effect of a dielectric coating on the RCS. The RCS of an uncoated
PEMC sphere of size parameter ρ = 3 is shown in Figure 1. This was
calculated using the analytical method presented in [4], and shows that
dependence of the total RCS and its co-polarized and cross polarized
components on M . Instead of the parameter M , which extends over
an infinite range, we use the dimensionless variable α, defined by

tan α = Mη0 (32)
so that α = 0 corresponds to the PMC case (M = 0) and α = 90◦
corresponds to the PEC case (M = ∞). The total RCS does not
depend on M , but the relative contributions of the co-polarized and
cross polarized contributions depend on M . For α = 45◦, i.e., Mη0 = 1,
the backscattered wave is completely cross polarized, whereas for
α = 0 (PMC sphere) and α = 90◦ (PEC sphere) it is completely
co-polarized. Next we add a dielectric coating, such that the outer to
inner size ratio is given by b/a = 1.1. We assume that the coating
has a near zero index of refraction, as is the case for some recently
produced metamaterials [12]. For such a coating a large reduction of
the radar cross section may be achieved (although the total scattering
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Figure 2. The RCS of a coated PEMC sphere. The core size
parameter is ρ = 3 and the coating parameters are b/a = 1.1,
εr = μr = 0.01. (a) Total RCS; (b) Co-polarized contribution to
the RCS; (c) Cross polarized contribution to the RCS.
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cross section is not reduced). The cross sections calculated for an
impedance matched coating with εr = μr = 0.01 are shown in Figure 2.
Comparing with Figure 1, we find that the addition of the coating
reduces the total RCS by more than an order of magnitude. The total
RCS does not depend on the value of M , whereas curves (b) and (c)
exhibit a symmetry about the α = 45◦ point, for which Mη0 = 1. As
in the case of the uncoated PEMC sphere (Figure 1) the co-polarized
component vanishes and the cross polarized component attains its
maximum at α = 45◦, i.e., for Mη0 = 1. These symmetry properties
no longer hold when εr �= μr. This is demonstrated by Figure 3, which
was calculated for εr = 0.01 and μr = 0.05.

Now the total RCS varies with M , and the cross polarized
component attains its maximum at α = 28◦. We next examine the
dual case, with the values of εr and μr interchanged, so that εr = 0.05
and μr = 0.01. The results for this case are shown in Figure 4. The
curves of Figure 4 are reflected about the α = 45◦ line in comparison
with the corresponding curves of Figure 3. From the definition of α,
Eq. (32), it follows that such a reflection corresponds to replacing Mη0

by (Mη0)−1.
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Figure 3. The RCS of a coated PEMC sphere. The core size
parameter is ρ = 3 and the coating parameters are b/a = 1.1, εr = 0.01,
μr = 0.05. (a) Total RCS; (b) Co-polarized contribution to the RCS;
(c) Cross polarized contribution to the RCS.
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Figure 4. The RCS of a coated PEMC sphere. The core size
parameter is ρ = 3 and the coating parameters are b/a = 1.1, εr = 0.05,
μr = 0.01. (a) Total RCS; (b) Co-polarized contribution to the RCS;
(c) Cross polarized contribution to the RCS.

4. CONCLUSION

We have presented an analytical theory for the scattering of an
electromagnetic plane wave by a coated perfect electromagnetic
conductor sphere. This was achieved by extending the classical
scattering theory for a coated sphere so as to allow for the appearance
of cross polarized components in the scattered fields. The theory
is valid for arbitrary sphere size and coating thickness. Also, the
permittivity and the permeability of the coating material may attain
arbitrary values, and may also be negative, as in metamaterials. The
theory provides systems of linear equations of order six, from which the
scattering coefficients are readily obtained numerically. Once these
coefficients are known, the various scattering cross sections can be
calculated. Numerical examples of cross section calculations were
presented, and the symmetry properties of the solutions were pointed
out. Thus, the solutions obey the following generalized electric-
magnetic duality relation. The cross sections of a coated PEMC sphere
with a given value of Mη0 and coating parameters εr = A, μr = B are
equal to those of a PEMC sphere of the same size, with a coating of
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the same thickness, but with Mη0 replaced by (Mη0)−1, and coating
parameters εr = B, μr = A.
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