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Abstract—This paper presents an approach of a shaped reflector
antenna synthesis using a steepest decent method (SDM). It first
discretizes the reflector surface into small patches and then uses grid
nodes as variables in the synthesis procedure. Even though the
number of variables can be very large for a large reflector antenna,
the advantage of providing closed-form solutions for the derivatives of
a cost function potentially makes this approach very efficient. The
large number of variables also assists this procedure to reach a more
global optimum as usually met in ordinary SDM. Numerical examples
are presented to validate this approach.

1. INTRODUCTION

Fast design of large shaped reflector antennas remains challenging
due to their increasing sizes needed in the applications of satellite
and wireless communications [1–12]. Such challenges arise from
the computational inefficiency in numerical radiation analysis that
becomes dramatically cumbersome as the reflector size or operational
frequency increase and needs to be repeatedly performed at every loop
of an iterative synthesis procedure. In the past, efforts have been
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focused on developing fast radiation analysis or convergent synthesis
techniques in a relatively independent fashion.

Typical works for the fast analysis techniques are presented
in [13, 14], mostly using the approximations of physical optics (PO)
or aperture integration (AI) by numerically integrating radiation
integrals. These techniques are most widely employed in the reflector
antenna analysis for practical applications. Either Fast Fourier
Transform (FFT) or expansions over the integrands using properly
selected bases, such as Gaussian beams (GB) [4, 5, 15], are performed
with endurable sacrifice of accuracy. Previously, successfully employed
synthesis techniques are referenced in [3, 8–12, 16–18] including genetic
algorithm (GA) [11], steepest decent method (SDM) [3, 5, 8, 9],
successive projection method (SPM) [10–12, 17] and particle swarm
optimization (PSO) [18]. Acceleration efforts were attempted in two
categories. The first tries to use fewer variables by representing
reflector surfaces in terms of basis functions [7, 19, 20] and uses the
associated coefficients as variables for optimization. It may however
loss freedoms for global optimization. More reduction in the number
of variables causes more freedom loss, and tradeoffs between efficiency
and optimum must be made. The second attempts to develop analytic
formulations for use in the optimization procedure [8–12]. In [8, 9],
direct surface variations are considered, and analytical formulations
for surface deviations based on the gradients of the cost function
defined in a frame work of SDM were developed. It avoids numerical
computations on the derivatives of a cost function, but still results in
integrals that need to be numerically integrated using FFT. In [10–12]
the reflector surface was discretized into patches. The radiations of
each patch serve as basis functions to synthesize the desired contoured
patterns, and SPM was employed to find coefficients of the basis
functions using linear projections into the common intersection of
available solution sets. The coefficients are transformed into the surface
deviations by constraining an equal amplitude of the coefficients.
It provides analytical and closed solutions for the surface variation.
However, SPM does not guarantee the existence of the common
intersected solutions, and the coefficients may be quite randomly
distributed. In most cases, not only surface smooth techniques need
to be performed in order to obtain continuous surface, but also rapid
surface variation may occur.

This paper presents an useful technique of synthesis procedure.
Analogous to that described in [8–12], it provides analytical
formulations. Moreover, its formulations have advantages of being
in closed forms and continuous for the reflector surface deviation. It
completely avoids the numerical integrations and surface smoothing
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required in [3, 8–12]. It first discretizes the reflector surface into
small patches whose sizes are selected sufficiently small to accurately
approximate the reflector’s radiation by a superposition of each patch’s
component in the PO radiation integral. If the optimized surface is
slowly varying, then the radiation analysis will retain the accuracy
as usually provided by PO, which is found to be true in numerical
experiences. The z-components of grid nodes’ coordinates are used as
variables in conjunction with a SDM synthesis technique to determine
the shaped reflector surface. It looks, at a first glance, to complicate
the synthesis procedure since the number of variables has now been
increased dramatically to cause cumbersome numerical computations
for the derivatives of a cost function in SDM. However, the proposed
work using patch decompositions for the radiation integral exhibits
advantages of providing approximate but in closed-form solutions for
the derivatives. The overall computational efficiency is found to be
improved.

The organization of this paper is as follows. Section 2.1 describes
the formulations of patch decomposition to evaluate the PO radiation
integral of a reflector antenna, which reduces the overall radiation in
terms of a superposition of fields radiated from a set of equivalent
current moments located at grid nodes. Section 2.2 summarizes SDM
and presents the closed-form formulations for the derivatives of a cost
function. Section 3 analyzes the computational complexity of this
work, and presents numerical examples to validate the proposed work
in the synthesis of a shaped reflector antenna. Finally some short
discussions are presented in Section 4 to conclude this work. A time
convention, ejωt, is used throughout this paper.

2. THEORETICAL DEVELOPMENTS

2.1. Patches Decomposition of Physical Optics Radiation
Integral

The radiation of a reflector antenna, when it is fed by (Ēf , H̄f ) as
illustrated in Figure 1, can be found by [9]

Ē(r̄) ∼= jk

4π
Z0

∫∫
S

R̂ × R̂ × J̄(r̄′)
e−jkR

R
ds′ (1)

where J̄(r̄′) = 2n̂ × H̄f (r̄′) is defined at r̄′ on S with n̂ being its
an outward unit vector normal to the surface. R̄ = r̄ − r̄′ with r̄
being a field location. Equation (1) can be numerically computed by
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Figure 1. Geometry for the shaped reflector antenna problem in
contoured beam application. The feed radiations (Ēf , H̄f ). The
surface is decomposed into small planar pathes with grids also shown
in this figure.

decomposing S into small patches and given by

Ē(r̄) ∼=
Nm∑
m=1

Ēm(r̄) (2)

with

Ēm(r̄) ∼= jkZ0

4π
e−jkRm

Rm
R̂m × R̂m ×

∫∫
ΔSm

J̄(r̄′m)ejkR̂m·r̄′mds′ (3)

where S =
Nm∑
m=1

ΔSm with ΔSm being the area of mth patch, R̄m =

r̄ − r̄m0 and r̄′m = r̄′ − r̄m0 with r̄m0 being the phase center of mth
patch. Nm is selected that (2) will reach an acceptable accuracy as
provided by PO. In general λ/4 patch width is sufficient in a practical
case. As ΔSm is sufficiently small and becomes approximately planar,
(3) can be approximated by averaging their values at patch corners by

Ēm(r̄) ∼= jkZ0

4π
e−jkRm

Rm
ΔSmR̂m×R̂m× 1

Mm

Mm∑
p=1

J̄m

(
r̄′mp

)
ejkR̂m·r̄′mp (4)

where r̄′mp indicates r̄′m at pth corner of mth patch, and Mm is the
number of corners for mth patch. Thus in the far zone, (1) can be
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re-expressed as a superposition of the contributions from corners by

Ē(r̄) ∼= jkZ0

4π
e−jkr

r
r̂ × r̂ ×

Nc∑
q=1

ejkr̂·r̄′q
Nq∑

m=1

ΔSm

Mm
J̄m(r̄′q)

=
jkZ0

4π
e−jkr

r
r̂ × r̂ ×

Nc∑
q=1

ejkr̂·r̄′q Īeq,q(r̄′q) (5)

where Nc is the number of corners formed by the patches and Nq is
the number of patches associated with qth corner at r̄′q. The equivalent
current moment, Īeq,q(r̄′q), in (5) is defined by

Īeq,q(r̄′q) ≡
Nq∑

m=1

ΔSm

Mm
J̄m(r̄′q) = ΔSeq,q

(
2n̂eq,q × H̄f (r̄′q)

)
(6)

with

ΔSeq,qn̂eq,q =
Nq∑

m=1

ΔSmn̂m

Mm
, (7)

which is an equivalent surface vector associated with qth corner. In (6)
and (7) J̄m(r̄′q) = 2n̂m × H̄f (r̄′q) with n̂m being n̂ at mth patch.
Equation (5) is dependent on the corners’ parameters, and allows one to
employ the corner locations as the optimization variables. A practical
implementation selects the locations of corners first, which globally
distribute over the reflecting surface, and determine the patches.

2.2. Efficient Synthesis Procedure via Steepest Decent
Method

SDM gives gradual parameters’ changes in reflector surface variations,
and results in a smooth reflector surface. It first defines a cost function
in terms of sampled radiations patterns as [3]

Φ =
Ns∑
�=1

f�

∣∣∣G� − Gd
�

∣∣∣2 (8)

where Ns is a number of samples and G� is the normalized gain at �th
field point with Gd

� being its desired value. It will be minimized to
optimize the reflector surface. Both sidelobe and cross-polarization
levels are controlled by specifying Gd

� in the sampled points, and
are considered as different sampled gains. f� is introduced in (8) to
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emphasize some desired gains, which is useful for side-lobe and cross-
polarization suppression since their values are very small.

In SDM the variables, βq(q = 1 ∼ Q) with Q being the number
of variables to define the reflector surface, is optimally changed in an
iterative fashion using (9), that is, βq at (i + 1)th iteration is found
by [6]

⎡
⎢⎢⎣

β1 (i + 1)
β2 (i + 1)

...
βQ (i + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

β1 (i)
β2 (i)

...
βQ (i)

⎤
⎥⎥⎦ − μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Φ
∂β1

∣∣∣
β1=β1(i)

∂Φ
∂β2

∣∣∣
β2=β2(i)
...

∂Φ
∂βQ

∣∣∣
βQ=βQ(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where μ is a scale factor to proper minimize (8). The implementation
procedure is demonstrated in Figure 2.

Numerical computations of the derivatives in (9) are cumbersome
because as βq changes, indicating a new surface shape of reflector, (1)
needs to be re-calculated, which increases dramatically as Q increases.
In the past, the value of Q needs to be first minimized by expanding
the surface using either global or local basis functions such as Jacobi-
Fourier series [7] and spline [14], respectively. Two disadvantages
are found. First, repeatedly computations of (1) are extremely
cumbersome since βq changes frequently during SDM. Secondly, a small
Q limits the freedom of surface variation. This work, employing coners

Figure 2. SDM synthesis procedure.



Progress In Electromagnetics Research, PIER 92, 2009 367

of the patched as optimization variables, allows a maximum freedom
in varying the surface for a global optimization. The surface shape is
determined by corner locations. In particular, zq of the qth corner’s
coordinate, r̄′q = (xq, yq, zq), are used as variables (i.e., βq = zq) while
fixing (xq, yq) to retain the projected aperture of the reflector.

At a first glance, this work increase Q up to several orders and
may worsen the optimization. It however exhibits advantages of
providing closed-form solutions for the derivatives in (9) because each
corner, (xq, yq, zq), is associated with very few patches as illustrated in
Figure 1. The derivative in (9) can be found by differentiating (8)

∂Φ
∂zq

= 2
Ns∑
�=1

[
f�

∂G�

∂zq
(G−

� Gd
� )

]
(10)

where
∂G�

∂zq
=

8π
Z0Pr

Re
[(

Ē (r̄�) · v̂�

)(
∂Ē (r̄�)

∂zq
· v̂�

)
∗
]

(11)

and using (5) gives

∂Ē(r̄)
∂zq

∼= k2Z0(b3 − a3)
4π

e−jkrejkr̂·r̄′q

r
r̂ × r̂ × Īeq,q(r̄′q). (12)

In (11), Pr is the radiation power, r̂ = (a1, a2, a3) and r̄′q−r̄f

|r̄′q−r̄f | =
(b1, b2, b3) with r̄f being the feed’s location. v̂� is the unit vector
indicating the polarization of interest, and may be used to specify
co- or cross-polarizations. Note that (10) is a closed-form solution,
and is continuous over the surface. Not only the derivatives of (8)
can be efficiently computed, but also the synthesized surface retains
smooth along the iterative procedure. Once the corner locations
are determined and fixed, the surfaces between these corners can be
interpolated and smooth using local basis functions such as these
described in [19, 20] without losing the accuracy of the radiation
patterns. As a result, if the distributions of the corners are shown to
be continuous and smooth, then the smoothness of the overall surface
can be assured.

2.3. A Useful Criterion to Choose μ

SDM uses (9) to update zq iteratively. The changes of zq, Δzq, in
each iteration are controlled by a proper selection of μ, and result in
phase changes for the equivalent moments in (6) in a way that the
superposition of their radiations will approach the desired contoured
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patterns. It can be achieved by allowing Δzq varying within a half
wavelength. The value of μ is selected such that maximum Δzq in
each iteration is less than a half wavelength. A good value is less
than 0.25 wavelength that represents a maximum phase change of
180 degrees (−0.25λ ∼ 0.25λ causes a maximum phase change of
180 degrees) so that the overall maximum Δzq after the completion
of synthesis may retain less than a half wavelength. In practice, μ
should be continuously decreases as the synthesis proceeds since SDM
converges very fast in the first few rounds of iteration and Δzq will
become gradually smaller. One may simply decrease μ to a quarter or
0.1 of its value in the previous iteration when the value of cost function
in (8) is found to increase, and retain this value for the next iteration.

2.4. Advantages and Limitations of the Proposed Work

In comparison with previous SDM works [3, 5, 8, 9], the current
approach exhibits advantages. In [3], the grids of the equivalent
aperture based on AI are used as optimization variables. It requires
performing ray-tracing to determine the reflector’s surface which needs
to be smoothed to retain a continues surface. The proposed work
completing avoids these. In [5], a reflector surface is represented by
a set of global basis functions to reduce the number of optimization
variables and computational time. The proposed work uses surface
grids as optimization variables. It has a much larger number of
optimization variables, but results in less computational time as to
be shown in Section 3. In comparison with [8, 9], which also provides
closed form solutions, the proposed work doesn’t require performing
FFT in computing the solution. The limitations of the proposed
work can be observed. First, the number of optimization variables
increases in an order of reflectors surface size. Second, the increase
will further increase the size of computer’s memory. These limitation
do not cause any inconvenience in practical applications with today’s
computer technologies in hand.

3. NUMERICAL VALIDATION AND DISCUSSION

3.1. Analysis of Computational Complexity

The computational complexity, justified by counting the number of
terms the operation of summations in each iteration of numerical
evaluation, is examined. One first examines the computation
complexity in a traditional SDM [5]. Assuming that Nb basis functions
are used to represent the reflector surface in a conventional SDM, the
number of terms is counted in the following. Using (5) to find the
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electromagnetic fields at Ns points for (8) requires Nc × Ns terms.
In each iteration one needs to find Nb(Q = Nb in (9)) derivatives
numerically for (9), and it requires Nc × Ns × Nb terms. Similarly
the number of terms in the proposed work is counted in the following.
Using (5) to find the the electromagnetic field at Ns points for (8)
needs Nc × Ns terms. Using (9) to find Nm derivatives (Nm ≤ Nc)
for (9) needs to compute Nm × Ns terms. Therefore if the number of
iterations is not considered, the proposed work apparently has a better
efficiency by cutting the computational complexity in an order of Nb.

3.2. Numerical Examples

The example shown in [3] is re-examined to produce a CONUS beam
with power constraints within 3 dB. The initial surface is parabolic with
a focal length 25λ. The radius of a projected circular aperture on the
x-y plane is 12.5λ, with an offset distance 3λ to avoid a feed blockage.
The operational frequency is 11.811 GHz. The feed has a cos11.25 θ
radiation pattern with a right hand circular polarization. This initial
reflector surface will radiate far fields with a directivity of 38.0 dB with
roughly 5 square degrees beam area. To achieve the beam constraints
shown in Figure 3, the maximum directivity is roughly 30 dB. Thus
the desired goal of directivity in the specified area of Figure 3 will be
larger than 28 dB, where fi in (8) is set to one for simplification. The
maximum deviation, Δzq, is initially set to be 0.2 wavelength, which is
gradually decreased by a factor of 0.25 when the cost function is found
to increase in the iterative procedure.

In a practical implementation, the surface change at first iteration
represents the steepest surface variations to minimize the cost function
by defocusing the focused fields radiated from a parabolic reflector.
This rapid surface change for energy defocusing may eventually results

Figure 3. Desired CONUS contoured pattern.
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in a rapid surface variation that is not considered to be sufficient
smooth from a point of view in a realistic manufacture. Figure 4(a)
shows the derivatives of the cost function using (11), which is
normalized in a way that the vector formed by these derivatives has a
unit norm and represents the changing rate of Δzq. Also Figure 5(a)
shows the contoured radiation patterns after this surface change. Note
that the maximum change length of Δzq is restricted to 0.2λ in this
case as mentioned in the previous paragraph. In particular, Figure 4(a)
shows that the surface distorts with a variation similar to a sine
function. It tends to spread the energy out in upward and downward
directions as shown in Figure 5(a), where two beams were formed in the

(a) Using (11) (b) Using (13)

Figure 4. Comparison of initial derivatives of the cost function used
in SDM.

(a)  Using (11) (b) Using (13)

Figure 5. Contoured radiation patterns at first iteration.
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coverage area. To avoid this phenomenon, an alternative formulation
is used at first iteration. The idea is to consider the behavior of the
power derivatives used in (11), where a real part is used and exhibits a
sine function behavior. Thus it can be conjectured that its imaginary
part will have a cosine function behavior. Figure 4(b) shows the surface
changing rate corresponding to Figure 4(a) except now (11) is replaced
by

∂G�

∂zq
= − 8π

Z0Pr
Im

[(
Ē (r̄�) · v̂�

) (
∂Ē (r̄�)

∂zq
· v̂�

)
∗
]

, (13)

where “-” sign is employed to assure positive surface variations for
convenience. The corresponding radiation pattern at first iteration
is shown in Figure 5(b). It is observed that the energy spreads out
concentrically. This gradual energy distribution allows the synthesis
to reach a better smoothness for its use in manufacture. Afterward,
(11) is employed to synthesize the surface. To further examine the
smoothness of the reflector, Δzq changing rates at 2nd, 7th and
21th iterations are shown in Figures 6(a)∼(c), respectively. First,
Figure 6(a) shows that the behavior of Δzq changing rate is similar
to that in Figure 4(b). it indicates that SDM continues to defocus the
radiating energy after its initial iteration. Once the energy defocusing
has sufficiently cover the desired area, SDM starts to modify the surface
such that the radiation will form the shaped pattern as shown in
Figures 6(b) and (c). Note that the maximum of Δzq changing length
decreases along the synthesis procedure. Figure 7(a) shows the changes
of maximum Δzq during the synthesis procedure, which makes the cost
function continuously decreases. The decreases on Δzq is necessary in
order to avoid wasting time in computing the values of cost function
which tends to increase along the synthesis procedure if the maximum
Δzq is retained same in each iteration. Also Figure 7(b) shows the
convergence of the cost function along the synthesis. The cost function
converges very fast in the first few rounds of iteration and the rate slows
down after 50 iterations. Thus after 50 iterations, the slow convergence
rate will result in smaller changes in the cost function and surface
variations of the reflector as well, which justifies the need to use a
smaller μ. This is advantageous over other techniques where global or
local basis functions are used to represent the reflector surface since no
prior knowledge on the selection of μ appears. In the current example,
only 60 iterations are performed to achieve the contoured patterns
shown in Figure 8(a), where 73 sampled field points are considered.
The maximum directivity is 30.5 dB in this case. The computation
of (5) uses triangular patches with a 0.25 wavelength sampling length,
which is sufficient to compute the fields located in the angular area of
interest (θ < 4◦), and results in 8154 corners (also 8154 variables) in
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the synthesis procedure. This number of variables is far larger than
the number of field points to be synthesized. Thus it reduces the
possibility of cost function’s convergences stuck in a local minimum
before a reasonable result is achieved.

 (a) 2nd iteration (b) 7th iteration

(c) 21th iteration

Figure 6. Derivatives of the cost function with respect to the
optimization variables using (11).

The computational efficiency can be further improved. Note
that (5) is simply used to compute the radiation fields, which can
be further accelerated if other efficient techniques are available such as
the analysis techniques based on a Gaussian beam expansion [4, 5, 10].
The deviation of the shaped surface from the original (initial) parabolic
reflector is also shown in Figure 8(b) for comparison. As described
earlier that the derivatives of the cost function with respect to Δzq

are continuous, which assures the continuity and smoothness of the
synthesized surface as demonstrated in Figure 8(b) where smooth
surface deviation is observed.

Finally the CPU time, running on an Acer Notebook with
Intel 2.2 GHz Core 2 Duo Processor T7500, is 0.28 seconds for the
computation in an iteration with total time less than 20 second to
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(a) Variation of maximum Δz q (b) Convergence curve

Number of Iterations

Number of Iterations

Figure 7. Changes of maximum Δzq and the convergence curve along
the synthesis procedure.

(a) Achieved contoured pattern (b) Surface deviation

Figure 8. The achieved contoured pattern and the surface deviation
(unit: wavelength) after the complete of synthesis.

complete 60 iterations of synthesis and achieve the results shown in
Figure 8(a).

4. CONCLUSION

This proposed work is very effective in the fast synthesis of shaped
reflector antennas to radiate contoured beams. This method exhibits
largest freedoms by using a large number of variables in the synthesis,
where the surface grid nodes are used. Closed form and continuous
solutions of cost function’s derivatives are developed, which allows
the surface varying smoothly while, in the mean time, retaining
the computational efficiency. Numerical examples show that the
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computational complexity in this work can be reduced by an order
of Q (the number of variables in the traditional SDM using numerical
computations to find the derivatives of a cost function).
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