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Abstract—In this paper, the uniform scattered fields from a perfectly
magnetic conducting (PMC) surface are studied with the extended
theory of boundary diffraction wave (TBDW). The vector potential
is described by considering the extended TBDW for the PMC surfaces.
The extended TBDW is then applied to the problem of scattering
from the PMC half plane. The total scattered fields are obtained and
compared numerically with the exact solution for the same problem.
The numerical results show that the solution of the extended TBDW
is very close to the exact solution.

1. INTRODUCTION

Young was the first person who interpreted the scattered fields as
the sum of incident fields and edge diffracted fields [1]. Young could
not formulate the scattering phenomena, but afterwards, Sommerfeld
obtained the exact solution for the problem of diffraction from a half
plane in terms of the Fresnel functions [2]. Later, the analytical
definition of Young’s ideas was introduced by Maggi-Rubinowicz [3, 4].
They independently showed that Helmholtz-Kirchhoff integral can be
converted into a line integral which represents the edge diffracted fields.
This definition was known as Maggi-Rubinowicz formulation or the
theory of boundary diffraction wave (TBDW). Miyamoto and Wolf
generalized the TBDW method for various incident fields [5, 6]. They
described a potential function which gives the edge diffracted fields
for an opaque surface. The formulation of Miyamoto and Wolf was
supported and refined by the studies of Rubinowicz [7, 8].
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The theory of boundary diffraction wave can be easily applied to
various diffraction problems. However, the diffracted fields from PEC,
PMC, or impedance surfaces can not be solved by using TBDW since
the theory is based upon an opaque screen.

TBDW method has been applied to diffraction problems. Otis
and Lit were investigated diffraction of a Gaussian laser beam from
the edge of an opaque half plane by using the TBDW [9]. The uniform
diffracted fields from an opaque half plane were examined for normal
and oblique incidence with TBDW approach [10, 11]. The problem of
diffraction from an opaque half plane was investigated using the detour
parameter with TBDW approach [12]. The potential function of the
TBDW was obtained for the impedance surfaces by the asymptotic
reduction of the modified theory of physical optics (MTPO) surface
integrals in [13]. The uniform line integral representation for TBDW
was examined by using the MTPO method [14]. Recent studies in [15–
17] have been focused on the applications of the TBDW. The extended
theory of the boundary diffraction wave that we consider in this paper
was first applied to the PEC surfaces by the author [18].

The evaluation of the surface integrals needs high computation
times for diffraction problems with complex geometries. TBDW
method reduces the surface integral to a line integral, resulting in a
significant improvement in the computation time. Moreover, the line
integral reduction of the surface integrals enables one to evaluate the
edge diffracted fields directly, by integrating the reduced integrand
along the edge contour.

In this paper, the scattered fields from a perfectly magnetic
conducting (PMC) surfaces are examined with the extended TBDW
approach. The vector potential of the PMC surfaces is obtained and
applied to the extended theory of boundary diffraction wave. The
extended TBDW is adapted for PMC surfaces. Verification of the
method is performed by applying it to the problem of scattering from
the PMC half plane. The uniform scattered fields, which are finite
at transition regions, are obtained. Results are compared numerically
with the exact solution for the same problem.

A time factor ejωt is assumed and suppressed throughout the
paper.

2. THE EXTENDED THEORY OF THE BOUNDARY
DIFFRACTION WAVE

It is known that the Helmholtz-Kirchhoff integral formula at an
aperture in an opaque plane can be expressed with a line integral [3, 4].
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Figure 1. Geometry of the extended theory of the Boundary
Diffraction Wave.

The scattered fields U(P ) at an observation point P can be given as [18]

U(P ) = UB(P ) + UGO(P ). (1)

The first term represents the boundary diffraction wave from the
boundary line Γ of the aperture surface (see Figure 1). The expression
can be given as

UB(P ) =
∫

Γ

~W (Q,P ) · d~l. (2)

Where, ~W (Q,P ) is the vector potential for the PEC surface. Q is the
variable point on the plane surface and d~l is the line element of the
boundary line Γ. The vector potential ~W (Q,P ) is symbolically given
as

~W (Q, P ) =
1
4π

e−jkR

R

[
~eR × ∇Q

(−jk + ~eR · ∇Q)
U(Q)

]
(3)

for PEC surfaces. Here, ~eR is the unit vector of the vector ~R and
R denotes the distance between the observation point P and Q (see
Figure 1). As the screen is PEC surface, U(Q) given in Eq. (3) will
be the sum of the incident Ui(Q) and reflected Ur(Q) fields at the
secondary source point Q [18].

The second term in Eq. (1) represents the contributions of
geometrical-optics (GO) fields from the special Qi points on the PEC
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surface or aperture. These points are singularities relating to the vector
potential ~W (Q,P ). Hence, UGO(P ) is given symbolically as [18]

UGO(P ) =
∑

i

lim
σi→0

∫

Γi

~W (Qi, P ) · d~l (4)

where, d~l is the line element of the boundary line Γi.

3. SCATTERING FROM THE PMC HALF PLANE

The diffraction geometry to be considered in this section is given in
Figure 2. In the figure, a homogeneous plane wave is illuminating
the PMC half plane. The homogeneous plane wave and the pseudo-
reflected wave can be given as

Ui(P ) = uie
jkρ cos(φ−φ0) (5a)

Ur(P ) = uie
jkρ cos(φ+φ0) (5b)

for the PMC half plane problem. Where, k is the wave number.
The diffracted field from the PMC half plane can be evaluated by

using Eq. (2). In this section, firstly, the vector potential concerning to
the PMC half plane will be obtained. U(Q) is the sum of the incident
Ui(Q) and reflected Ur(Q) wave according to the extended TBDW [18].
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Figure 2. Geometry of the scattering from PMC half plane.
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Since the secondary source point Q is located at the origin, x′ = y′ = 0
for this case. Gradient of U(Q) can be given as

∇QU(Q) = −jkui(~ei + ~er) (6)

at this point. Hence, the vector potential of the PMC half plane
problem can be found as

~W (Q,P ) = ui
1
4π

e−jkR

R

(
~eR × ~ei

1 + ~eR · ~ei
+

~eR × ~er

1 + ~eR · ~er

)
(7)

by using Eqs. (5) and (6) in Eq. (3). The related unit vectors in Eq. (7)
can be written as

~ei = − cosφ0~ex − sinφ0~ey

~er = − cosφ0~ex + sin φ0~ey

~eR = − cosφ~ex − sinφ~ey

(8)

by considering the geometry in Figure 2. Hence, the diffracted field
integral can be found by evaluating Eqs. (7) and (8) in Eq. (2). One
obtains

UB(P ) = −ui
1
4π

[
tan

(
φ− φ0

2

)
+ tan

(
φ + φ0

2

)] ∫

Γ

e−jkR

R
dl. (9)

Where, ~l is equal −~ez for this problem. R is the amplitude of the
position vector ~R (See Figure 2) and given as

R =
[
x2 + y2 + (z − z′)2

]1/2 (10)

Therefore, the diffracted field integral can be rewritten as

UB(P )=−ui
1
4π

[
tan

(
φ−φ0

2

)
+tan

(
φ+φ0

2

)] ∞∫

z′=−∞

e−jkR

R
dz′ (11)

by considering dl = dz′. The integral expression in Eq. (11) defines a
Hankel function [19]

H
(2)
0 (kρ) =

2j

π

∞∫

0

e−jkρchβdβ (12)
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utilizing the variable change of (z − z′) = ρshβ. As a result, the
diffracted field integral is obtained as

UB(P ) = −ui
1
4j

[
tan

(
φ− φ0

2

)
+ tan

(
φ + φ0

2

)]
H

(2)
0 (kρ). (13)

Where, ρ is equal the [x2 +y2]
1/2. Debye’s asymptotic expansion of the

second kind Hankel function can be given as

H
(2)
0 (kρ) ≈

√
2
π

e−j[kρ−(π/4)]

√
kρ

(14)

for kρ →∞. Hence, the diffracted field can be found as

UB(P ) ≈ − ui

2
√

2π

[
tan

(
φ− φ0

2

)
+ tan

(
φ + φ0

2

)]
e−jkρ−jπ/4√

kρ
(15)

for the PMC half plane problem. The expression of the diffracted field
in Eq. (15) approaches to infinity at the transition regions (reflection
and shadow boundary). Therefore, uniform diffracted field will be
found. The first part of the diffracted field can be written as

UBi(P )≈−uie
−jπ/4

2
√

π
sin

(
φ− φ0

2

)
e
−j2kρ cos2

(
φ−φ0

2

)

√
2kρ cos(φ−φ0

2 )
ejkρ cos(φ−φ0) (16)

by utilizing the trigonometric identity of 1 = 2 cos2(A) − cos(2A).
Then, Eq. (16) can be rewritten as

UBi(P ) ≈ ui

∧
F (ξi) sin

(
φ− φ0

2

)
ejkρ cos(φ−φ0). (17)

The argument of the Fresnel function represents the detour
parameter [20, 21]. The detour parameter gives the phase difference
between the incident (or reflected) and diffracted fields. Thus, the
detour parameter associated with the incident field can be easily
obtained as

ξi = −
√

2kρ cos[(φ− φ0)/2] (18)

by considering Eqs. (5) and (15).
∧
F (ξi) is the Fresnel function and can

be given as
∧
F (ξi) =

e−j(ξ2
i +π/4)

2
√

πξi
. (19)
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So, the first uniform part of the diffracted field can be written as

UBi(P ) ≈ ui F (|ξi|)sgn(ξi) sin
(

φ− φ0

2

)
ejkρ cos(φ−φ0) (20)

by using the asymptotic relation for the Fresnel function valid for large

arguments, i.e.,
∧
F (ξi) ≈ F (|ξi|)sgn(ξi). Here, sgn(ξi) shows the signum

function, which is equal to −1 for ξi < 0 and 1 for ξi > 0. Fresnel
integral F (ξi) can be given as

F (ξi) =
ej π

4√
π

∞∫

ξi

e−jt2dt. (21)

Similarly, the second uniform part of the diffracted field can be found
as

UBr(P ) ≈ −ui F (|ξr|)sgn(ξr) sin
(

φ + φ0

2

)
ejkρ cos(φ+φ0). (22)

Here, ξr is the detour parameter associated with the reflected field and
can be given as

ξr = −
√

2kρ cos[(φ + φ0)/2] (23)

for this problem. The uniform total diffracted field can be found as

UB(P ) = UBi(P ) + UBr(P )

= ui

[
F (|ξi|)sgn(ξi) sin

(
φ− φ0

2

)
ejkρ cos(φ−φ0)

+ F (|ξr|)sgn(ξr) sin
(

φ + φ0

2

)
ejkρ cos(φ+φ0)

]
(24)

As a result, extended TBDW total scattered fields can be obtained as

U
(pmc)
Bt = ui

{
ejkρ cos(φ−φ0)u(−ξi) + ejkρ cos(φ+φ0)u(−ξr)

+
[
F (|ξi|)sgn(ξi) sin

(
φ− φ0

2

)
ejkρ cos(φ−φ0)

+ F (|ξr|)sgn(ξr) sin
(

φ + φ0

2

)
ejkρ cos(φ+φ0)

]}
(25)

by using the Eqs. (5) and (24) for PMC half plane problem.
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4. NUMERICAL RESULTS

In this section, extended TBDW total scattered fields will be compared
with the exact solution of the perfectly magnetic conducting (PMC)
half plane problem. The exact solution can be given for PMC half
plane problem as [22]

U
(pmc)
t (P ) = 2ui

∞∑

n=0

εn

2
e
jnπ/4Jn/2

(kρ) cos
(

nφ

2

)
cos

(
nφ0

2

)
(26)

where εn = 1 for n = 0, εn = 2 for n 6= 0.
Figure 3 demonstrates the variation of extended TBDW total

scattered fields from PMC half plane, given in Eq. (25), and the
exact solution of the Helmholtz equation, given in Eq. (26), versus
observation angle. Here, ui is the selected as unit amplitude, kρ is
taken as 30. It is seen from the Figure 3 that the extended TBDW
scattered fields are very close to the exact solution.

Figure 3. Comparison of total scattered fields from PMC half plane
(Oblique incidence φ0 = π/3).

Figure 4 demonstrates the variation of extended TBDW total
scattered fields, given in Eq. (25), and the exact solution of the
Helmholtz equation, given in Eq. (26), versus observation angle. ui

is the selected as unit amplitude, kρ is taken as 30. It is seen from
the Figure 4 that the extended TBDW scattered fields are very close
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Figure 4. Comparison of total scattered fields from PMC half plane
(Normal incidence φ0 = π/2).

to the exact solution. It should be noted that the same observation is
valid for all the angles of the edge incidence (φ0) and holds true also
for all values of (kρ).

5. CONCLUSION

In this study, the scattered fields from PMC surfaces are examined with
the extended TBDW. The vector potential of the extended TBDW is
defined for PMC surfaces. The problem of scattering from a PMC
half plane is introduced with the extended TBDW. To derive the
uniform diffracted fields, the uniform theory of diffraction and the
high-frequency asymptotic expansion of the Fresnel function are taken
into account. The total uniform scattered fields are then compared
numerically with the exact solution of the same problem. It is seen
from the numerical results that the extended TBDW scattered fields
approximate the exact solution successfully.
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