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Abstract—In finite element analysis, methods for the solution of
sparse linear systems of equations usually start out with reordering
the coefficient matrix to reduce its bandwidth or profile. The location
of pseudo-peripheral nodes is an important factor in the bandwidth
and profile reduction algorithm. This paper presents a heuristic
parameter, called the “width-depth ratio” and denoted by κ. With
such a parameter, suitable pseudo-peripheral nodes would be found;
the distance between which could be much close to or even to be the
diameter of a graph compared with Gibbs-Poole-Stockmeyer (GPS)
algorithm. As the new parameter was implemented in GPS algorithm,
an improved bandwidth and profile reduction algorithm is proposed.
Simulation results show that with the proposed algorithm, sometimes
bandwidth and profile could be reduced by as great as 33.33% and
11.65%, respectively, compared with the outcomes in GPS algorithm,
while the execution time of both algorithms is close. Empirical results
show that the proposed algorithm is superior to GPS algorithm in
reducing bandwidth or profile.
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1. INTRODUCTION

Analysis of many problems in electromagnetics involves the solution
of partial differential equations arising from the finite element method
(FEM), with the form [1–5]:

Ax = B (1)

where the n× n matrix A is the coefficient matrix, called the stiffness
matrix. The matrix A is a large sparse symmetric matrix, so there is a
direct correspondence between the structures of A and the structures
of the FEM mesh. Both direct and iterative methods can be used for
solving such a system.

In direct method, for the efficient solution and to compress the
memory space, it is desirable to have a nodal renumbering before the
construction of the stiffness matrix A to ensure that A has a narrow
bandwidth or a small profile.

A lot of algorithms have been proposed for the problem of matrix
bandwidth or profile reduction. The first extensive study of such
a problem was done by Cuthill and McKee in 1969 as the Cuthill-
McKee (CM) algorithm [6]. Methods proposed in the late 1970s and
early 1980s include the Reverse Cuthill-McKee algorithm [7], Gibbs-
King algorithm [8], and Gibbs-Poole-Stockmeyer (GPS) algorithm [9].
Methods proposed in the 1990s include the spectral method [10] and
the algorithm using simulated annealing (SA) procedure [11].

One of the most popular algorithms among all the bandwidth
or profile reduction methods is GPS algorithm. The success of GPS
algorithm is dependent on the selection of starting nodes, finding a pair
of nodes which are located at nearly maximal distance apart, called the
pseudo-peripheral nodes. It has been demonstrated by extensive tests
available in the literature that this strategy provides good starting
nodes [12, 13].

However, GPS algorithm cannot always find the pseudo-peripheral
nodes with the distance which is the “diameter” in a graph. There may
be several candidates for good pseudo-peripheral nodes in a graph. The
selection of the pair of nodes may make a difference. Consequently, if
additional criteria were taken into account to pick the eligible nodes,
the real “diameter” would be found.

In this paper, a new parameter “width-depth ratio” is introduced,
denoted by κ, aiming at improving the selection of pseudo-peripheral
nodes. We modify the part of finding pseudo-peripheral nodes in GPS
algorithm to get the “diameter” nodes.

The paper is organized as follows: Section 2 introduces basic
concepts and terminologies. Section 3 gives the definition of the
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new parameter κ, the basic procedures of the new algorithm,
and also a simple example to illustrate each step of the new
algorithm. Section 4 compares simulation results and performances
of the proposed algorithm against GPS algorithm with 16 classical
electromagnetic models. Section 5 draws up our conclusions.

2. BASIC CONCEPTS AND TERMINOLOGIES

2.1. Matrix Bandwidth and Profile

Let the coefficient matrix A in Equation (1) be an n by n symmetric
matrix, with entries aij . The ith bandwidth of A is defined by

βi(A) = i−min {j| aij 6= 0} (2)

The bandwidth of A is defined by

β = β(A) = max {βi(A) |1 ≤ i ≤ n} = max {|i− j| |aij 6= 0} (3)

For Cholesky decomposition, the relation between the number of
operations Nop and the bandwidth β is [14]

Nop = β (β + 2)n− 2
3
β3 − 3

2
β2 − 5

6
β (4)

The relation between memory space Mspace and β is [15]

Mspace = (β + 1)n− 1
2
β2 − 1

2
β (5)

If β ¿ n, Nop is simplified as a function

Nop = O
(
nβ2

)
(6)

The memory space required is also simplified as a function

Mspace = O (nβ) (7)

Hence, reduction in β leads to a square ratio reduction in Nop and
a homogeneous reduction in Mspace.

The vector that contains all the bandwidth lines is called the
envelope of A and defined by

Env(A) = {(i, j) |0 < i− j ≤ βi(A), i = 1, . . . , n} (8)

The quantity |Env (A)| is called the profile of A and is defined by

P (A) = |Env (A)| =
n∑

i=1

βi (A) (9)

By minimizing the profile, we minimize the number of stored zero
values of stiffness matrix.
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2.2. Graph Theory

By renumbering nodes in corresponding graph G, we can change the
structure of A to reduce its bandwidth and profile. Hence the graph
theory can be used to solve bandwidth and profile reduction problem.

For A = (aij)n×n in Equation (1), we can define a graph G =
(V,E), where V has n nodes, {v1, v2, . . . , vn} and {vi, vj} ∈ E if aij 6= 0
and i 6= j. The elements of V = V (G) and E = E (G) are called nodes
and edges, respectively.

Level structure is an important concept concerning bandwidth and
profile reduction algorithms in graph theory. A level structure, L (G),
of a graph G is a partition of set V (G) into levels L1, L2, . . . , Lk,
so the depth of L (G), d (L), is k, the number of levels. The essential
properties of L (G) are that all nodes adjacent to nodes in L1 are in
either L1 or L2; all nodes adjacent to nodes in Lk are in either Lk or
Lk−1; for 1 < i < k, all nodes adjacent to nodes in Li are in either Li−1,
Li or Li+1. To each node v ∈ V (G) there corresponds a particular level
structure Lv (G) called the level structure rooted at v. In any level
structure L (G), rooted or not, wi(L) = |Li| (the number of nodes in
Li) is called the width of Li, and w (L) = max {wi} (i = 1, . . . , k) is
the width of the level structure L (G).

3. DESCRIPTION OF THE NOVEL ALGORITHM

3.1. Basic Theory of Proposed Algorithm

It is easily observed that for any level structure, L (G), a numbering
fL of G that assigns consecutive integers level by level, from L1 to the
last level, yields a bandwidth, βfL

, satisfying [9]

βfL
≤ 2w (L)− 1 (10)

If L (G) is rooted, then we also have

βfL
≥ w (L) (11)

The width of any level structure L (G), w (L), and the depth of
L (G), d (L) satisfy

n

d (L)
≤ w (L) ≤ n2

d (L)
(12)

Equation (12) shows that if level depth d (L) becomes larger, level
width w (L) has the tendency to become smaller. So we put forward a
new parameter “width-depth ratio”, denoted by κ, defined by

κ =
w (L)
d (L)

(13)
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The pseudo-diameter of the graph, PD (G), and the depth the
level structure, d (L), have the relation

PD (G) = d (L)− 1 (14)

If we pick the pseudo-peripheral nodes with the minimal width-
depth ratio, it means that the level structure or the graph tends to
have the maximal d (L), maximal PD (G) and minimal w (L), which
is desired to get a smaller bandwidth and further a smaller profile.
From Equations (10), (11), (12) and (13) we get a relation that smaller
width-depth ratio leads to smaller bandwidth and profile.

3.2. Procedure of the Proposed Algorithm

The description of proposed algorithm is divided to three parts,
composed of the following steps:
(i) Finding pseudo-peripheral nodes of G.

1) Pick all the nodes with the minimal degree and call them the
candidate nodes group.

2) Compute the value of κ of each node in candidate nodes
group.

3) Pick all the nodes with the minimal value of κ in candidate
nodes group; call them κ nodes group.

4) Set k to be the depth of level structures rooted from κ nodes
group.

5) If there is only one node in κ nodes group, call it “v”, and
go to step 7); if there are no less than two nodes in κ nodes
group, go to step 6).

6) If we can find two nodes in κ nodes group to be the pseudo-
peripheral nodes, set them to be node “v” and node “u”,
generate level structure rooted from each node, which are Lv

and Lu, and the first part of the proposed algorithm stops
here; if not, find the node with the smallest code and call it
node “v”, and go to step 7).

7) Generate a level structure Lv rooted at node v and let S be
the set of nodes which are located in the last level of Lv; find
node in S with the smallest value of κ and call it node “u”,
and generate rooted level structure Lu.

(ii) Minimize level width by combining the level structures rooted at
“v” and “u” found in step (i).

(iii) Renumber nodes in G level by level.
Step (ii) and step (iii) are both similar to the second and third

part in GPS algorithm.
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3.3. An Example

To illustrate the proposed algorithm, consider the graph in Figure 1(a),
which is composed of 49 nodes. The initial bandwidth and profile are
48 and 532. The bandwidth and profile after GPS algorithm are 12
and 329. The pseudo-peripheral nodes in GPS algorithm are node 1
and 9, while the pseudo-diameter is 6.
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(a) Initial numbering and pseudo-diameters
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(b) Renumbering in proposed algorithm

Figure 1. Graph with 49 nodes.

First, pick all the nodes with the minimal degree. In this case
the minimal degree is 3. The candidate nodes group is (1, 2, 5, 8, 11,
14, 17, 22). Then compute κ of each node in candidate nodes group,
the results is (13/7, 13/7, 13/7, 13/7, 13/7, 13/7). All have the same
value of κ, so κ nodes group is also (1, 2, 5, 8, 11, 14, 17, 22). Pick
node 1 and generate its rooted level structure, node 8 is just in the last
level of this level structure, thus set node 1 and node 8 as node “v”
and “u”, respectively. The pseudo-diameter is 6, which is the length
of path between node 1 and 8.

After the second and third parts of proposed algorithm we have a
new numbering as shown in Figure 1(b). The bandwidth and profile are
8 and 318, and the reduction ratios in bandwidth and profile are 33.3%
and 3.34%, respectively, compared with the results of GPS algorithm.

It is easily observed that the path with the longest length in
the graph is 6; hence the proposed algorithm just found the pseudo-
diameter with the same length as GPS algorithm. However, the
pseudo-peripheral nodes in two algorithms are different as well as the
paths between pseudo-peripheral nodes. The pseudo-diameter in the
proposed algorithm is just in the middle of the graph, cutting the graph
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into two equal parts, while the pseudo-diameter in GPS algorithm is
irregular, as shown in Figure 1.

4. DESCRIPTION OF TEST RESULTS

In this section, we report the results on a range of test problems.
The authors chose 16 classical models, containing both solid and
plane models. The solid models were meshed in tetrahedron elements,
and the plane models were meshed in triangle elements. The
obtained results are then compared to the results in GPS algorithm.
The proposed algorithm and GPS algorithm were both coded with
FORTRAN 95 programming language.

Table 1 shows the test results containing bandwidths, profiles, and
pseudo-diameters of 16 models.

Table 1. Bandwidths, profiles and diameters of two algorithms, PD
— pseudo-diameters, βp — bandwidth in proposed algorithm, βG —
bandwidth in GPS algorithm.

No. Nodes GPS proposed algorithm 1− βp/βG

βG profile PD βp profile PD

1 49 12 P1 7 8 0.9666P1 7 33.33%

2 85 15 P2 12 15 0.9945P2 12 0.00%

3 194 40 P3 12 38 0.9724P3 12 5.00%

4 199 17 P4 16 17 0.9978P4 16 0.00 %

5 204 16 P5 22 15 0.9784P5 22 6.25%

6 366 22 P6 30 21 0.9884P6 30 4.55%

7 521 16 P7 53 16 0.9572P7 53 0.00%

8 677 36 P8 30 34 0.9800P8 30 5.56%

9 738 24 P9 44 24 0.9880P9 46 0.00%

10 745 60 P10 24 47 0.8835P10 24 21.67%

11 750 34 P11 31 34 0.9915P11 31 0.00%

12 3683 82 P12 91 80 0.9750P12 93 2.44%

13 12029 1128 P13 31 1059 0.9703P13 31 6.12%

14 22298 1123 P14 44 1090 0.9980P14 44 2.94%

15 72610 340 P15 299 322 0.9978P15 300 5.29%

16 149610 864 P16 294 783 0.9654P16 300 9.38%
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From Table 1, we can see the renumberings generated by proposed
algorithm; all have smaller bandwidths and profiles, compared with the
outcomes in GPS algorithm. The bandwidth can be reduced by 21.67%
in the No. 10 model, or even by 33.33% in the No. 1 model; the profile
can be even reduced by 11.65% in the No. 10 model.

In some cases, the pseudo-diameters are longer than the ones in
GPS algorithm. In the No. 9 and No. 12 models, pseudo-diameters are
both increased by 2; in the No. 15 model, pseudo-diameter is increased
by 1; in the last model, pseudo-diameter is even increased by 6. The
models without increase in pseudo-diameters also get reductions in
bandwidth and profile.

Figure 2 graphically displays the time ratio between two
algorithms, where TPro is the time cost by proposed algorithm; TGPS is
the time cost by GPS algorithm. From Figure 2, we find that most time
ratio between two algorithms is 1. The biggest time ratio is around 1.4
in the No. 13, No. 15, and No. 16 models, while the reduction ratios
in bandwidths of these models are all more than 5%.

Figure 2. Computation time ratio between two algorithms.

5. CONCLUSIONS

Based on GPS algorithm, we put forward a new parameter κ (width-
depth ratio). Upon κ, we develop a novel algorithm to supply proper
pseudo-peripheral nodes, in order to obtain high quality results in
minimizing bandwidth and profile of a stiffness matrix in the finite
element analysis. The examples presented in this paper concerning a
variety of real problems confirm the insufficient of GPS algorithm in
the selection of pseudo-peripheral nodes.
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We have tested both algorithms by the same 16 classical models
and compared their performance. Both approaches give significant
improvements. However, our implementation was shown to be more
competitive. The pseudo-diameter in proposed algorithm is even longer
than the one of GPS by 6. The bandwidth reduction are impressive,
and some of them are as high as 33.33%. The profile reduction
are also desirable, and the biggest reduction ratio is 11.65%. The
computation time of proposed algorithm is very close to the time cost
by GPS algorithm, meaning the cost in time is worthy in the bandwidth
and profile reduction. We can reach a conclusion that the proposed
algorithm is more effective in reducing bandwidth and profile.

For all models mentioned in this paper, the proposed algorithm
produces better renumbering and is only slightly worse in computation
time, compared with GPS algorithm. It is concluded that the
proposed algorithm has a more suitable rule; hence, the renumbering
in proposed algorithm can be always better than the renumbering in
GPS algorithm. The proposed algorithm can be widely used in the
renumbering of stiffness matrix in the finite element method.
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