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Abstract—In this work, a Quasi Monte Carlo (QMC) Integration
Technique using Halton Sequence is proposed for the Electric Field
Integral Equation (EFIE) in the Method of Moments (MoM) solution
for scattering problems. It is found that the Halton Sequence used in
QMC integration scheme is capable of handling the singularity issue
in the EFIE automatically and at the same time provides solution to
the scattering problems very easily. Finally the proposed technique is
applied to solve the scattering problem from a finite cylinder employing
the entire domain basis function expansions. The results obtained show
a good agreement between the proposed and conventional technique.

1. INTRODUCTION

Multidimensional numerical quadratures are of great importance in
many practical areas, ranging from radiation/scattering problems in
computational electromagnetics to atomic physics. The EFIE in
solution of MoM for scattering problems involves multidimensional
integrals especially when the Galerkin’s technique for solution is
employed. It is well known that the (N)-Dimensional scattering
problem using Galerkin’s technique involves solution of a (2N)-
Dimensional Integral Equation. Gaussian Quadrature methods, on one
hand, yield precise results with relatively few integrand evaluations,
but they are not too robust and work best for very smooth functions
and the time complexity in numerical quadrature methods increases
as the dimension of the problem increases. Monte Carlo methods [1-
3], on the other hand, impose few requirements on the integrand, but
are known to converge slowly. It is an integration approach that is
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well suited for irregular or singular integrands and requires no analytic
knowledge about the form of the integrand. The conventional Monte
Carlo integration (MCI) method is independent of the dimension of the
integral, and that is why MCI is the only practical method for many
high-dimensional problems.

QMCI methods are based on the idea that random Monte Carlo
techniques can often be improved by replacing the underlying source
of random numbers with a more uniformly distributed deterministic
sequence. The fundamental feature underlying all QMCIs, however,
is the use of a quasi-random number (QRN) sequences in place of the
usual pseudorandom numbers which often improves the convergence of
the numerical integration.

One of the key issues in the solution of the EFIE using Galerkin’s
technique is the singularity appearing the Green’s function kernel of
the Integral Equation. The type of the singularity is weak in nature.
Several techniques [4-6] have been used in the past to deal with the
issue of singularity in order to solve the problem. The conventional
MCI takes care of the singularity aspect without employing any
analytical techniques such as Singularity subtraction/removal, polar
co-ordinate transformation, etc. and implements the idea just by
restricting the random points to fall in the singular region by including
a simple statement in the program code used for the simulation
purpose [7,8]. However, the proposed Halton sequence in QMCI takes
care of the singularity issue automatically without even modification
or inclusion of any condition in the program code and provides solution
to the problem more accurately and faster than the conventional MCI
with randomly generated point sequences. It is also proved that the use
of Halton sequences due to their inherent property automatically makes
the kernel non-singular. The mathematical concept of the generation
of Halton sequences is elaborated in [9, 10].

2. FORMULATION OF SCATTERING PROBLEM

The EFIE is formulated for the case of finite open-ended cylinders and
solved using Galerkin’s MoM solution implementing QMCI.
The electric field is given by E = ———(V(V ¢ A) + k?A) where

j4meow
A = [, J(r')G(r,r')dr’, where the integration is over the entire source

region R'. G(r,r') = =
Consider the TM scattering of a plane wave incident upon an open-
ended cylinder of length [ and radius p as shown in the Figure 1. The
axis of the cylinder is along the z-direction and the wave is traveling
along the x-direction.

7jk|r7r/| . .
€ ——— is the free space Green’s function.
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Figure 1. A finite PEC cylinder illuminated by a TM plane wave.

As is clear from the geometry, the induced current on the surface
will have two components; Jy(¢',2') and J.(¢',2'). As a result,
A(6,2) = @Ay(6, ) +2A.(6, 2) where

zp ¢'=2m
Ay(0, ) —/ / Jo(¢'2)G(8,2; b, 2)pdg'd?’ (1)
za ¢'=0

and
zp ¢'=2m

A0 = [ [ L6 o pidas (@)
za ¢'=0
The free space Green’s function is given by
k202 (1—cos(¢—¢")+(2—=)?
V2% (1 = cos(p — ¢')) + (z — 2')? ¥
The EFIE —E¢ = E?® on the surface of the cylinder takes the form
—jAmew (6, 2) = (V(V e A(6,2)) + K2A(6,2)  (4)
10
P 8¢

along the x axis the equatlon is

< 1 9%A 10%A
—zi Jjkpcos¢ — ¢ 2 1 2
zjdmegwe [0 [( 2 502 +k A¢> + p@qf)@z]

+z [ 2602 +<8z2 +k‘Az>} (5)

G(¢,7;0,2) =

0
where V = + z—. Explicitly for the TM wave propagating
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Taking the z component of the equation,

10%4, (82Az

—jAmeqwelkPeosd — Z +
JEmE p 00z 022

where Ay and A, are given by (1) and (2) respectively.

+ kQAZ> (6)

2.1. Basis Function Expansion and MoM Solution

The unknown current components are expanded in terms of known
basis functions

J¢(¢’,z’):a¢1f¢1(¢/,z/)+...+a¢M¢f¢,M¢(¢’,z’); 0§¢/§27T and
Jz(¢/aZl)zazlle<¢/azl)+--‘+azszzMz(¢/azl); ZASZ/SZB-

Here, |z4| = |zp|. The total number of unknowns in the expansion is
thus My - M..

Substituting the expansion of the current into (6) and applying
Galerkin’s approach, the equation reduces into the matrix equation

< f1(6,2) > ] " ao ]

(7)

—j47r50w < ejkPCOS¢ ° f¢M¢ (¢,Z) > [Angg Azd) ] QpMep (8)

< eikpcose o faa(op,2) > Aqbz A, az1

| < elhreosd e foar(¢,2) > Lz |

The unknowns can be obtained by matrix inversion. The entries of the
matrix are given by the four dimensional integrals

=27 2/ =zp ¢=27 2=z

(Agsmn = / [ [ @60 200

=0 2'=z4 ¢=0 z=z24

1 0% fom (o, L
(pW) p*dd'd2' dgdz (9a)

&' =21 2'=zp ¢=27 2=2p

A = [ [ [ [ ta@ 160500

¢'=0 2'=z4 ¢p=0 z=z4

2
(% + B fm (6, z>) pPd'd:'dpdz  (9b)
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' =27 2/ =2p ¢=27 z=2p
(Aqbz)mn = / / / / f¢n(¢/> Z/)G(¢,7 Z,; d)a Z)
¢'=0 2'=z4 ¢p=0 z=z4

102 fom (0, .y
<pw> p2dd’ dz' dodz (9¢)

@' =27 2/ =2p ¢=27 z=2p

W = [ [ [ [ 1l )66 00
¢=0 z'=z4 ¢=0 2=z

<W =+ szzm(¢a Z)> P2d¢/dz,d¢)d2 (Qd)

From the geometry of the problem as shown in Figure 1, it is clear
that

a) Jy is antisymmetric with respect to the variables ¢’ and 2/, i.e.,
Jo(—¢',2") = —=Jp(¢,2) and Jy(¢', —2") = —Jy(¢', 2). Also, Jy
will show diverging effect at the edges 2’ = z4 and 2/ = zp.

b) J. is symmetric with respect to the variables ¢/ and 2/, i.e.,
J(—=¢', ') = J.(¢,2) and J,(¢',—2") = J.(¢/,2'). Also, J, will
show diverging effect at the edges 2/ = z4 and 2/ = zp. Also,
J. is zero at the edges 2/ = z4 and 2/ = zp, ie., J.(¢,z4) =
JZ(¢/, ZB) =0.

Keeping the above facts in mind, the basis functions taken are:

Myg

MZ¢ Z/7LZ¢
/ / 3 /
J¢(¢ )y % ) = § E Cngen.e Sln(n¢¢¢ ) 5
nge=1o0dd n.s=3 7y — 2"

0<¢ <2m, 24<7 <zp (10a)
and

Mg M.

T = D D g ¢ ( - )

ng,=1 even n;,=2
0<¢ <2m, 24 <7 <zp. (10Db)
Here, Mgy + M.y = My and My, + M., = M.

2.2. QMCI Technique Implementation

It can be seen from (9) and the expression for Green’s function in (3)
that the matrix entries are four dimensional integrals in variables
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¢',7,¢ and z due to the application of Galerkin’s technique for
solution. These contain line singularities at all values of variables
where z = 2/ and ¢ = ¢’ for the region 0 < ¢/, ¢ < 27 and z4 < 2/,
z < zp. There can be added point singularities if the derivatives
of the basis function contain singularities. The technique that has
been used in integrating functions in (9) is the QMCI. Here, Halton
sequences with four different bases 2, 3, 5 and 7 are generated for the
four variables ¢', 2/, ¢ and z respectively. Since Halton sequence points
are self-avoiding and no two Halton sequences are same, the QMCI
tackles the singularity problem effectively for integrals in (9). This
can be further elaborated with the help of Table 1 [10]. As evident,
for a three dimensional Halton point, the z, y and z-coordinates
are generated using three different bases such as base 2, base 3
and base 5 respectively. Therefore, if two separate quasi-random
sequences spread over the domain are chosen for the source and the
field points for each coordinate, then they are never equal to each
other. Therefore the condition for the integrand to become singular
will not arise. On the other hand, in Faure sequence same base is
used for all the dimensions. Therefore even if it has the advantage
that it can be generated recursively using one dimension sequence for
a multidimensional problem; some points that will be generated for
other dimensions will be the same. Thus the same sampling points
will be obtained for the source and the field coordinates leading to the
singularity condition in the integrand. Besides, the numerical effort
required to generate Halton sequences for different dimensions using
different bases is less than Faure sequences for different dimensions
employing scrambled sequences. Moreover, there is no strong evidence
that when the dimension of the problem is moderate (e.g., d < 15)
it makes a great deal of difference whether one uses Halton, Faure
or Sobol sequence. The suitability of the proposed technique is
demonstrated for charge density problem for several examples in [10].

3. TEST CASES

As an example, scattering of a TM plane wave of frequency 10 GHz
by a finite open metallic cylinder of length 1\ and circumference 1\ is
considered. In this case, in the proposed entire domain expansion of
the current distribution, Mgy = My, =1, M.y = 3 and M., = 2. It
is observed that increasing the number of terms in the expansion does
not change the result. For this case, the magnitude of the normalized
current distribution along the length of the cylinder for ¢ = /2 is
shown in Figure 2. It is compared with the result obtained by using
conventional sub domain method. A good agreement between the two
is observed.
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Figure 2. Current distribution along the length of the cylinder for
¢ = m/2. (a) Proposed entire domain. (b) Sub domain.
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Figure 3. Current distribution along the circumference of the cylinder
at the edge. (a) Proposed entire domain. (b) Sub domain.

Next, the magnitude of the normalized current distribution along
the circumference of the cylinder at the edge is shown in Figure 3. It
is also compared with the result obtained by using conventional sub
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Figure 4. Normalized surface current density variation with z and ¢
for [ = A, circumference = \.
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Figure 5. Normalized surface current density variation with z and ¢
for [ = 2\, circumference = 2\.

domain method. Again a good agreement between the two is observed.
Two-dimensional surface views depicting ¢ and z variation of the
normalized current distributions for the two cases [ = A, circumference
= ), and | = 2\, circumference = 2\ are shown in Figure 4 and
Figure 5 respectively. Finally, the RCS for the above two cases have
been plotted in Figure 6 and Figure 7.
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Figure 6.

Figure 7.
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4. CONCLUSION

117

The QMCI technique using Halton sequence is proposed in the MoM
solution of the EFIE. As an example, TM scattering of a plane
wave by a finite PEC cylinder is investigated. It is found that the
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proposed technique not only solves the scattering problem efficiently
but also removes the singularity problem appearing in the kernel of
the integrand due to the inherent property of the Halton sequence.
In addition to this, exact form of the kernel is retained without any
approximation or analytical effort.

REFERENCES

1. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes, 2nd edition, Cambridge
University Press, 1992.

2. Ripley, B. D., Stochastic Simulation, John Wiley & Sons, Inc.,
1987.

3. Niederreiter, H., Random Number Generation and Quasi-Monte
Carlo Methods, STAM, Pennsylvania, 1992.

4. Cai, W., Y. Yu, and X. C. Yu, “Singularity treatment
and high-order RWG basis functions for integral equations of
electromagnetic scattering,” Int. J. Numerical Methods FEng.,
Vol. 53, 31-47, 2002.

5. Dufty, M. G., “Quadrature over a pyramid or cube of integrands

with a singularity at a vertex,” SIAM Journal on Numerical
Analysis, Vol. 19, 12601262, December 1982.

6. Khayat, M. A. and D. R. Wilton, “Numerical evaluation of
singular and near-singular potential integrals,” IEEE Trans.
Antennas Propagat., Vol. 53, No. 10, 3180-3190, October 2005.

7. Mishra, M. and N. Gupta, “Singularity treatment for integral
equations in electromagnetic scattering using Monte Carlo

integration technique,” Microwave and Optical Technology
Letters, Vol. 50, No. 6, 1619-1623, June 2008.

8. Mishra, M. and N. Gupta, “Monte Carlo integration technique
for the analysis of electromagnetic scattering from conducting
surfaces,” Progress In FElectromagnetic Research, PIER 79, 91—
106, 2008.

9. Halton, J. H., “On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional integrals,”
Numer. Math., Vol. 2, 84-196, 1996.

10. Mishra, M., N. Gupta, A. Dubey, and S. Shekhar, “Application of
quasi Monte Carlo integartion technique in efficient capacitance
computation,” Progress In FElectromagnetics Research, PIER 90,
309-322, 2009.



