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Abstract—Conjugately characteristic-impedance transmission lines
(CCITLs) implemented by lossless periodic transmission-line struc-
tures have found various applications in microwave technology, and
the T-chart was developed to perform the analysis and design of CC-
ITLs effectively. Originally, the normalization factor used in defin-
ing normalized impedances of the T-chart is the geometric mean of
characteristic impedances of CCITLs, which is not only one possible
choice. By using other normalization factors based on characteristic
impedances, different graphical representations can be obtained; i.e.,
T-charts for CCITLs with passive characteristic impedances are not
unique, and it depends on the associated normalization factor. In
this study, three more possible normalization factors related to char-
acteristic impedances of CCITLs are investigated. It is found that all
T-charts for each normalization factor are strongly dependent on the
argument of characteristic impedances of CCITLs in a complicated
fashion. The original T-chart based on the geometric mean of char-
acteristic impedances is found to be the most convenient graphical
representation for solving CCITL problems.
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1. INTRODUCTION

Conjugately characteristic-impedance transmission lines (CCITLs)
have found various applications in microwave technology [1–7].
Examples of CCITLs are reciprocal lossless uniform transmission
lines (TLs), nonreciprocal lossless uniform TLs, exponentially tapered
lossless nonuniform TLs [3, 8] and periodically loaded lossless TLs
operated in passband [10–15]. In general, CCITLs are lossless
and possess different characteristic impedances, which are complex
conjugate of each other, for waves propagating in opposite directions.
In the analysis and design of CCITLs, the analytical approach usually
provides quite complicated formulas. In contrast, a graphical approach
based on the T-chart provides a simpler way to obtain solutions with
more physical insight [1–4].

Similar to the Smith chart for reciprocal uniform transmission
lines, the T-chart is also the plot of normalized impedances and
admittances in the reflection coefficient plane for CCITLs. For the
Smith chart, the normalization factor used in defining normalized
impedances is usually the characteristic impedance of reciprocal
uniform transmission lines, which is always unique. For the original T-
chart, the normalization factor is the geometric mean of characteristic
impedances of CCITLs. However, it is not only one possible choice.
Using other normalization factors based on characteristic impedances,
different graphical representations can be obtained; i.e., T-charts for
CCITLs are not unique, due to their dependence on normalization
factors. In this study, three more possible normalization factors
related to characteristic impedances of CCITLs are investigated. Only
CCITLs with passive characteristic impedances are considered in this
study.

This paper is organized as follows. Section 2 discusses the theory
of CCITLs in brief. Section 3 presents how different T-charts can be
obtained for each normalization factor. Graphical representations of
different T-charts are depicted in Section 4. Finally, conclusions are
provided in Section 5.

2. THEORY OF CCITLS

This section provides the necessary background on CCITLs for
constructing all relevant T-charts in the next section. Figure 1
illustrates a CCITL terminated in a passive load impedance ZL

possessing the propagation constants, β+ and β−, with corresponding
conjugate characteristic impedances, Z+

0 and Z−0 for propagation in
the forward and reverse directions, respectively. Along the CCITL,
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Figure 1. A CCITL terminated in a passive load impedance.

the travelling wave equations for phasor voltage V (z) and the phasor
current I(z) can be written as [1]

V (z) = V +
0 e−jβ+z + V −

0 ejβ−z , (1)

I(z) =
V +

0

Z+
0

e−jβ+z − V −
0

Z−0
ejβ−z , (2)

where e−jβ+z and ejβ−z terms represent waves propagating in the
+z and −z directions, respectively. By definition, the characteristic
impedances of CCITLs Z±0 are complex conjugate of one another;

Z+
0 =

(
Z−0

)∗
, (3)

where the superscript “∗” denotes the complex-conjugate symbol. For
convenience, Z±0 are defined in a polar form as

Z±0 = |Z0| e∓jφ, (4)

where |Z0| and φ are the absolute value and argument of Z−0 ,
respectively. For passive characteristic impedances (Re{Z±0 ≥ 0}), (4)
implies that the argument φ must lie in the following range:

−90◦ ≤ φ ≤ 90◦. (5)

The voltage reflection coefficient at the load Γ is given by

Γ ≡ V −
0

V +
0

=
ZLZ−0 − Z+

0 Z−0
ZLZ+

0 + Z+
0 Z−0

, (6)

and the input impedance Zin can be written compactly in terms of Γ
as [1]

Zin = Z+
0 Z−0

1 + Γe−j
∼

2β`

Z−0 − Z+
0 Γe−j

∼
2β`

, (7)
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where the effective propagation constant β̃ is defined as
∼
β ≡ 1

2
(
β+ + β−

)
. (8)

For passive load terminations, the magnitude of the voltage reflection
coefficient at the load is always less than or equal to unity [9]. In the
next section, the construction of all alternative T-charts is illustrated.

3. CONSTRUCTION OF T-CHARTS

To construct all T-charts, the same concept as of constructing the
Smith chart is employed. Similar to the Smith chart, T-charts are
also the plot of normalized impedances and admittances in the voltage
reflection coefficient plane for CCITLs. For the Smith chart, the
normalization factor used in defining normalized impedances is usually
the characteristic impedance of reciprocal uniform transmission lines,
which is unique. For the original T-chart (also called a generalized ZY
Smith chart) [1], the normalization factor Z̃0 is the geometric mean of

characteristic impedances of CCITLs; i.e.,
∼
Z0 =

√
Z+

0 Z−0 = |Z0|, which
is always real. However, it is not only one possible choice. In this study,
three more possible normalization factors related to characteristic
impedances of CCITLs are investigated; i.e., the arithmetic mean of
Z+

0 and Z−0 (Case 1), Z−0 (Case 2) and Z+
0 (Case 3). Only passive load

terminations are of interest in this study; i.e., the region of interest is
within or on the unit circle in the Γ plane.

For Case 1, the normalization factor
∼
Z0 is

∼
Z0 =

Z+
0 + Z−0

2
= |Z0 cosφ| = |Z0| cosφ, (9)

where cosφ ≥ 0 for passive characteristic impedances (see (5)). Note

that
∼
Z0 is real in this case. The normalized impedance z of an arbitrary

impedance Z is defined as

z ≡ Z
∼
Z0

. (10)

Using (6), (9) and (10), the normalized load impedance zL can be
written compactly in terms of Γ as

zL =
1 + Γ

cosφ (ejφ − Γe−jφ)
, (11)

where Γ ≡ Γr + jΓi and zL ≡ rL + jxL. After rearranging the real
and imaginary parts of (11), the resistance and reactance circles can
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be obtained respectively as follows:
(

Γr − rL cos 2φ

rL + 1

)2

+
(

Γi − rL sin 2φ

rL + 1

)2

=
(

1
rL + 1

)2

, (12)

[
Γr−

(
xL cos 2φ−tanφ

xL+tanφ

)]2

+
[
Γi−

(
xL sin 2φ+1
xL+tanφ

)]2

=
(

1
xL+tanφ

)2

.(13)

Using the same procedure as above, equations of the conductance and
susceptance circles of Case 1 can be obtained respectively as follows:

[
Γr +

(
gL

gL + cos2 φ

)]2

+ Γ2
i =

(
cos2 φ

gL + cos2 φ

)2

, (14)

(Γr + 1)2 +
[
Γi +

(
cos2 φ

bL − sinφ cosφ

)]2

=
(

cos2 φ

bL − sinφ cosφ

)2

, (15)

where gL and bL are the real and imaginary parts of the normalized
load admittance yL = 1/zL.

For Case 2, the normalization factor is
∼
Z0 = Z−0 = |Z0| ejφ, (16)

which is complex in general. Following the same procedure as in Case 1,
these four circle equations can be obtained as follows:

[
Γr−

(
2rL cos 2φ−1+cos 2φ

2 (rL+1)

)]2

+
[
Γi−

(
2rL sin 2φ+sin 2φ

2 (rL + 1)

)]2

=
[√

2 cos 2φ + 2
2 (rL + 1)

]2

, (17)

[
Γr−

(
2xL cos 2φ−sin 2φ

2xL

)]2

+
[
Γi−

(
2xL sin 2φ+cos 2φ + 1

2xL

)]2

=
[√

2 cos 2φ + 2
2xL

]2

, (18)

[
Γr+

(
2gL−cos 2φ+1

2 (gL+1)

)]2

+
[
Γi−

(
sin 2φ

2 (gL+1)

)]2

=
[√

2 cos 2φ+2
2 (gL + 1)

]2

,(19)

[
Γr+

(
2bL−sin 2φ

2bL

)]2

+
[
Γi+

(
cos 2φ+1

2bL

)]2

=
[√

2 cos 2φ+2
2bL

]2

, (20)

for resistance, reactance, conductance and susceptance circles,
respectively.

For Case 3, the normalization factor is
∼
Z0 = Z+

0 = |Z0| e−jφ, (21)
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which is complex in general. Following the same procedure as in Case 1,
these four circle equations for resistance, reactance, conductance and
susceptance are given as follows:

[
Γr−

(
2rL cos 2φ−cos 2φ+1

2 (rL+cos 2φ)

)]2

+
[
Γi−

(
2rL sin 2φ−sin 2φ

2 (rL+cos 2φ)

)]2

=
[√

2 cos 2φ+2
2 (rL+cos 2φ)

]2

, (22)

[
Γr−

(
2xL cos 2φ−sin 2φ

2 (xL+sin 2φ)

)]2

+
[
Γi−

(
2xL sin 2φ+cos 2φ+1

2 (xL+sin 2φ)

)]2

=
[√

2 cos 2φ+2
2 (xL+sin 2φ)

]2

, (23)

[
Γr+

(
2gL+cos 2φ−1
2 (gL+cos 2φ)

)]2

+
[
Γi+

(
sin 2φ

2 (gL+cos 2φ)

)]2

=
[√

2 cos 2φ+2
2 (gL+cos 2φ)

]2

, (24)

[
Γr+

(
2bL−sin 2φ

2 (bL−sin 2φ)

)]2

+
[
Γi+

(
cos 2φ+1

2 (bL−sin 2φ)

)]2

=
[√

2 cos 2φ+2
2 (bL−sin 2φ)

]2

, (25)

respectively.

Figure 2. The original ZY T-chart using Z̃0 = |Z0| with φ = 30◦.
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Note that the normalization factors for these three cases depend
on both |Z0| and φ, while the original normalization factor based on
the geometric mean of Z±0 depends only on |Z0|. In addition, it is
found that those four circle equations of these cases are reduced to be
identical to those of the standard Smith chart when φ = 0◦ as expected.
Next, examples of graphical representations of T-charts for each case
are depicted in Section 4.

4. GRAPHICAL REPRESENTATIONS OF EACH
T-CHART

In Section 3, it is found that all T-charts strongly depend on the
argument φ in a complex fashion. To illustrate these dependences,
consider T-charts for each case, including the original T-chart [1], when
φ = 30◦ and φ = −30◦. Figure 2 illustrates the plot of the original

ZY T-chart using Z̃0 =
√

Z+
0 Z−0 = |Z0| with φ = 30◦. In addition,

Figures 3 to 5 illustrate the plot of the ZY T-charts of Cases 1, 2 and 3
in the Γ plane with φ = 30◦, respectively. The horizontal line and the
line OP , drawn from the origin O in the Γ plane to the touching point
P of all reactance circles, intersect each other at the angle θ. Note
that the point P in Figures 2 to 5 is the same point. In addition, it is

Figure 3. The ZY T-chart of Case 1 with φ = 30◦.
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Figure 4. The ZY T-chart of Case 2 with φ = 30◦.

Figure 5. The ZY T-chart of Case 3 with φ = 30◦.
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found that the relationship between the argument φ and the angle θ is
given by

θ = 2φ. (26)

In this case, θ is equal to 60◦ for φ = 30◦. Note that impedance and
admittance scales for each T-chart are different.

Figure 6 illustrates the plot of the original ZY T-chart using
Z̃0 = |Z0| with φ = −30◦. In addition, Figures 7 to 9 illustrate the
plots of the ZY T-charts in the Γ plane with φ = −30◦ for Cases 1, 2
and 3, respectively. Using (26) with φ = −30◦, θ is equal to −60◦ in
this case. Note that impedance and admittance scales for each T-chart
are different as well.

From Figures 2 to 9, it is observed that the circle rL = 0
(gL = 0) is always the unit circle for Z̃0 = |Z0| (geometric mean)
and Z̃0 = |Z0| cosφ (arithmetric mean) as shown in Figures 2, 3, 6 and
7, and all circles rL > 0 and all circles gL > 0 are always within the
unit circle. For the normalization factors of Cases 2 and 3, the circle
rL = 0 (gL = 0) is not the unit circle in general as shown in Figures 4,
5, 8 and 9, and the circles rL < 0 and the circles gL < 0 can exist
within the unit circle.

Comparing Z̃0 = |Z0| (geometric mean) and Z̃0 = |Z0| cosφ
(arithmetric mean), it can be noticed that both normalization factors

Figure 6. The original ZY T-chart using Z̃0 = |Z0| with φ = −30◦.
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Figure 7. The ZY T-chart of Case 1 with φ = −30◦.

Figure 8. The ZY T-chart of Case 2 with φ = −30◦.
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are always real. In addition, Z̃0 = |Z0| does not depend on φ unlike
Z̃0 = |Z0| cosφ. It can also be observed that when φ → ±π

2 , the
normalized impedance (z = Z/Z̃0) of Z̃0 = |Z0| cosφ approaches
infinity, which is not convenient in usage. On the other hand, both
normalization factors of Cases 2 and 3 are complex in general and
depend on φ. Therefore, the normalized impedances of Cases 2
and 3 change their physical meanings of the original unnormalized
impedances. For example, when the load impedance is real, the
normalized impedances of Cases 2 and 3 generally become complex
numbers due to the normalization process, which may cause misleading
to users. As a result, some passive load impedances may possibly yield
a negative normalized resistance when using the normalization factors
of Cases 2 or 3 as shown in Figures 4, 5, 8, and 9. Based on the above
observations, the original normalization factor of Z̃0 = |Z0| (geometric
mean) is the best for solving CCITL problems because it is real and
independent of φ.

Figure 9. The ZY T-chart of Case 3 with φ = −30◦.
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5. CONCLUSION

It is found that all four considered T-charts for each normalization
factor are strongly dependent on the argument φ of characteristic
impedances of CCITLs in a complicated fashion. In addition, these
T-charts are reduced to the Smith chart when φ = 0◦ as expected.
Procedures of using all T-charts for solving CCITL problems are similar
to those of using the Smith chart. In a preliminary study, it is found
that all T-charts yield the same input impedances for given terminated
CCITLs as expected. Among these T-charts, the original T-chart
with the normalization factor of the geometric mean of Z+

0 and Z−0
is the most convenient chart for solving CCITL problems with passive
characteristic impedances as pointed out earlier at the end of Section 4.
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