
Progress In Electromagnetics Research, PIER 94, 153–173, 2009

THE ORIGIN OF ELECTROMAGNETIC RESONANCE
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Abstract—After a report on strange electromagnetic resonances
emerging in an isotropic paraelectric Menger sponge (MS) now known
as a photonic fractal, vigorous studies began to reveal their properties.
However, the mechanics of how the resonances occur is still unknown.
This report focuses on the findings that the resonances can be
perturbation-theoretically identified as those originally occurring in
an isolated dielectric cube, and that they arise within band gaps and
uncouple with Bloch modes for a certain multiperiodic lattice. This
interpretation is justified by the fact that the MS can be considered as
a cube embedded in the lattice rather than the outcome of conventional
recursive fractal structuring operations. An experimental formula
for resonance conditions already reported can be derived from this
interpretation.

1. INTRODUCTION

Since it has been reported in [2] that strange electromagnetic
resonances are experimentally observed in an isolated paraelectric
object now called a photonic fractal (PF) [8], (a lump of isotropic
paraelectric shaped Menger sponge (MS) [1], which is a triadic
Cantor-type three-dimensional fractal structure as shown in Figure 1),
vigorous studies continue to be carried out, both experimental [3, 5]
and theoretical [4, 7, 9]. As a result, basic electromagnetic scattering
and resonant properties of the PF were gradually revealed to some
extent. However, the fundamentals, such as the mechanics for how the
resonance occurs, are still unfamiliar. For example, no physical model
explains the already-reported empirical resonance condition [5] for a
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Figure 1. 3-D view of a Stage-3 Menger sponge (MS) with side length
d. The Stage-number representing fractal levels of an MS is defined in
Section 2.

fundamental mode supported by a PF with side length d and average
permittivity ε̄r represented in terms of the free space wavelength λ0,

d =
3
2

λ0√
ε̄r

, (1)

despite its simple expression.
Investigations of the frequency dependencies of transmission

properties for a multilayered filter with a Cantor-bar type layer
structure (see Figs. 3 and 4 in Reference [10]) corresponding to a
one-dimensional rendering of the PF revealed that the resonance
condition (1) holds approximately not only for resonant modes in the
three-dimensional structure, but also for those in the one-dimensional
structure, if one regards d and λ0/

√
ε̄r as the total filter thickness

and incident wavelength, respectively. From this finding, it could
be conjectured that the same physics governs the resonant modes
for both. Moreover, it is crucial that the filter does have a band
structure in the transmission spectrum which is typical of periodic
potentials, and that resonance peaks always appear in band gaps,
although no obvious periodic structure can be recognized in the filter.
In addition, (1) suggests that the Cantor-bar type fractal structure
must choose the third harmonic among the resonant modes generated
by a single film with thickness d and average permittivity ε̄r. From
these intuitions, the generating mechanism of the resonant modes for
a PF (hereinafter called those localized modes, following Reference [2])
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could be conjectured as follows.

Localized
mode specified
by (1)

≈

A resonant mode corresponding to the third
harmonic originally arises in a dielectric cube with
side length d and permittivity ε̄r. This mode
selection is caused by the interaction between non-
localized modes (namely, Bloch modes) coming
from a certain periodic structure and resonant
modes supported by the cube, both structures
embedded in the PF.

(2)

This report states that the conjecture of (2) concerning the
mechanics of how the localized mode occurs in a PF is justified by
applying perturbation theory to mode coupling analyses, and that the
experimental condition (1) can be derived as an outcome. In Section 2,
by introducing a novel construction method for an MS, we determine
that a PF certainly contains a periodic structure. Then, the strategy
for mode analysis of PF is clarified via the construction method, and
is summarized in Section 3. In Section 4, following the strategy, mode
analysis for the periodic and cubic potentials is performed individually,
and then the mode couplings between the two are treated using the first
perturbation approximation. There, the justification of (2) is given in
addition to a derivation of the resonance condition (1). It is also shown
in Section 5 that the mechanics can explain some experimental findings
hitherto unexplained.

2. NOVEL CONSTRUCTION METHOD FOR AN MS

An MS is a three-dimensional fractal structure possessing evident self-
similarity [1] of single scale factor 1/3 between substructures with
adjacent fractal levels, as shown in Figure 1. It can be conventionally
constructed by recursively operating a set of the following geometrical
manipulations on a cube as an initial operand.

(i) Subdivide every initial cube into 27 smaller cubes with the
homothetic ratio of 1/3 to the initial cubes.

(ii) Then, remove 7 of the small cubes lying at the center of each side
and body of the initial cubes.

The repetition number of the operation is called the Stage-number (MS
in Figure 1 has Stage-number 3) and is an important parameter for
distinguishing structural differences of MSes. It is almost impossible
to extract periodic structures from an MS using this conventional
construction method. However, we can devise a novel fractal
construction method treating an MS as a unit cell of a multiperiodic
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lattice, as depicted in Figure 2. Here, we will denote a potential
(concrete definitions will be given below) for a simple cubic lattice as
L(1)(x), where x means a position. For L(1)(x), the lattice constant is
(d, d, d), and the primitive cell is a hexapod shape as shown in Figure 3.
In addition, the hexapod is composed of three orthogonally crossing
rectangular pillars with length d and square cross section of side length
d/3. We assume that the potential L(1)(x) takes 1 at the outside of the
hexapods and 0 inside. If we also label a similar lattice potential with
the homothetic ratio (1/3)i−1 (i ≥ 2) to L(1)(x) as L(i)(x), and a cubic
potential with side length d and taking 1 inside and 0 outside as C(x),
then a potential MN (x) for an MS with Stage-N taking 1 inside and
0 otherwise can be expressed in terms of above quantities as follows:

MN (x) = C(x)
N∏

i=1

L(i)(x) = C(x)
N∏

i=1

L(1)
(
3i−1x

)
. (3)

Figure 2. Novel construction method for a Stage-3 MS. The MS
can be regarded as a unit cell of a multiperiodic lattice obtained by
the product of three similar simple cubic lattices having hexapods at
every site. Note that the complement of each potential is shown for
easy depiction.
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Figure 3. 3-D structure of a hexapod potential: A primitive cell of
lattice potential L(1)(x) with lattice constant (d, d, d).

As can be seen in (3) and Figure 2, an MS can be regarded as a
primitive cell quarried out from a multiperiodic lattice obtained by
the product of ordinal periodic lattices L(i)(x) = L(1)(3i−1x). Figure 2
schematically shows that an MS with Stage-3 is properly generated
according to the novel method (note that complements of L(i)(x) are
depicted in the figure for easy visibility). In summary, it was confirmed
that a periodic (specifically, multiperiodic) structure certainly occurs
in MSes.

3. STRATEGY FOR MODE ANALYSIS OF A PF

In Section 2, it was stated that MSes do contain cubic and (multi-) pe-
riodic potentials. As shown in subsequent sections, the isolate cubic
potential generates a set of discrete resonant modes in which the elec-
tromagnetic energy concentrates into a small spatial area, and the pe-
riodic potential supports Bloch modes spreading throughout the space
and showing band structures in the dispersion characteristics. The
two modes must generally couple with each other within the MS un-
less there are exceptional conditions, because they are not orthogonal
modes. Also, it can be hypothesized that the resonant mode cannot
localize, and disappears from MS spectra if coupling or degeneracy
occur between the two modes, because part of the localizing energy
of the resonant mode is distributed to Bloch modes and carried away
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into free space. From this hypothesis, localized modes of the MS can
be regarded as originating from resonant modes supported by a cubic
paraelectric, and never couple and degenerate to Bloch modes gener-
ated by a multiperiodic lattice. Considering conjecture (2), conditions
that mode coupling and degeneracy never happen can be interpreted
that the two modes are to be orthogonal and resonant modes must
appear within band gaps of Bloch modes.

As mode coupling can be suitably dealt with by applying
perturbation theory, we will first identify the resonant modes and
Bloch modes individually for the zeroth order approximation, and
then calculate the coupling among them by treating the former as
the first-order perturbation correction to the latter. If we find modes
fulfilling the above-mentioned conditions, we will regard them as the
origin of localized modes for the MS. In contrast to this treatment,
another calculation can be performed by regarding Bloch modes as
a perturbation to the resonant modes; this will also be carried out to
derive explicit resonant conditions including (1). Mode analysis will be
concretely carried forward in subsequent sections using this strategy.

4. THE ORIGIN OF LOCALIZED MODES

4.1. Band Structure of Multiperiodic Lattices

4.1.1. Single Periodic Lattices

To begin, we will summarize the behavior of Bloch modes supported by
a single periodic lattice potential within the scope of the weak-coupling
approximation (i.e., amplitudes for scattered waves can be regarded as
the first-order correction to incidents), in order to introduce quantities
and concepts frequently used in subsequent discussion. Monotonic
magnetic fields H(x) with angular frequency ω propagating in an
isotropic paraelectric medium with permittivity distribution εr(x) are
governed by Maxwell’s equations with potential U(x) = 1/εr(x) and
solenoidal condition divH(x) = 0 as a constraint,

∇× {
U(x)∇×H(x)

}−WH(x) = 0, (4)

where W = ω2/c2 (c: Speed of light).
If εr(x) has the periodicity of the simple cubic lattice with lattice

constant d, general solutions for (4) can be represented as a linear
combination of the Bloch modes {|n〉} = {ei(k+Pn)·x /

√
d3} with

corresponding vector-valued expansion coefficients {H(n)}, namely
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H(x) =
∑

n H(n)|n〉. Then {|n〉} satisfy the following relations:

Pn =
2π

d
n, (n = (n1, n2, n3), ni = 0,±1,±2, . . .) (5a)

〈m|n〉 =
1
d3

∫

1 cell

d3x e− i(k+Pm)·x ei(k+Pn)·x = δmn. (5b)

Note that the solenoidal condition now becomes (k + Pn) ·H(n) = 0
for every mode. It can be seen from (5b) that the field distributions
{H(n)|n〉} ≡ {|n 〉〉} form an orthonormal basis if |H(n)|2 = 1, and
any fields can be expanded into a unique linear combination of this set.

The zeroth and first corrections to an eigenvalue W for (4)
associated with every mode can be concretely obtained by applying
perturbation expansion to (4) in terms of a perturbation U(x). If
the eigenvalue is represented as perturbation expansion W = W (0) +
W (1) + . . . (W (i) means the i-th correction term), plane waves with
wavenumbers satisfying the Bragg reflection condition (hereinafter
abbreviated as the Bragg condition, and the condition is derived as the
pole of the first order approximated amplitude H(n)) (k + Pn)2 = k2

(namely, k = −1/2Pn if n 6= 0) have the following approximate
eigenvalues.

W (0) = U(0) |k|2, (where U(0)= 1/ε̄r) (6a)

W (1) = ±|U(m)| |k|2 (6b)

Here, U(m) means a Fourier coefficient for U(x) with respect to
|m〉, that is, U(m) = 〈m|U(x)|0〉 = 1/d3

∫
d3xU(x) e− iPm·x (the

integral is performed over the primitive cell as shown in (5b)), and
ε̄r is the averaged permittivity and corresponds to the inverse of
U(0) = 〈0|U(x)|0〉.

It can be seen from (6b), under the first approximation,
that plane waves cannot propagate at frequencies where the Bragg
condition is satisfied, because the interference of scattering waves
from the potential becomes dominant, and mode splitting of two
degenerating Bloch modes arises, although they could propagate in
the entire frequency range under the weak limit |U(m)|/|U(0)| →
0. Consequently, the dispersion relation ε̄r ω2 = c2|k|2 is slightly
modified, and band gaps having frequency width ∆W = 2|U(m)||k|2
appear. This outcome suddenly leads to the fact that if U(m) = 0,
mode couplings never occur, and Bloch modes can propagate freely
even though the Bragg condition is satisfied. This finding is crucial for
subsequent analysis.
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4.1.2. Band Theory for Multiperiodic Lattice (Recursive Treatment)

Based on the previous subsection, band structures for Stage-N
multiperiodic lattice LN (x) =

∏N
i=1 L(i)(x) contained in the potential

of MS MN (x) as in (3) are investigated in this section. Using LN (x),
a potential UN

L (x) corresponding to a multiperiodic lattice composed
of an isotropic paraelectric with permittivity εr can be represented as
follows:

UN
L (x) = 1− ε−1

f LN (x),
(
ε−1
f ≡ 1− 1/εr

)
. (7)

As each sublattice composing LN (x) has a simple cubic structure,
its reciprocal lattice space can be always spanned by Pn, which was
already investigated. Since the information about band structures
is included only in −ε−1

f LN (m), (m 6= 0) because of (7), below we
will focus on LN (m). Concrete calculations of LN (m) can be easily
performed by applying a fractal construction method already reported
in [9] rather than the one developed in Section 2, and the quantities
can be directly obtained from the following recursion equations.

LN+1(m) =
1
33

LN (m/3)AF (Pm)

L0(m) = sinc(1/2Pm d)

AF (P) = 4

(
3∑

i=1

1
cos(1/3Pid)

+ 2

)
3∏

i=1

cos(1/3Pid)

(8)

Here, sincx ≡ ∏3
i=1 sinxi/xi and x = (x1, x2, x3).

Figure 4 shows numerical results of 20 log10|LN (m)| for Stage-
numbers 1 to 4 obtained using (8). Every density graph is normalized
by LN (0), and plotted on a plane m = (m1,m2, 0) with brighter
colors representing bigger values. It can be seen from the figure that
LN (m) = 0 exactly holds if vector m has at least one component
equal to multiples of 3N . As the multiperiodic lattice possesses simple
cubic symmetry, Figure 4 demonstrates that band gaps, assigned
by wavenumbers k = −PmN / 2, which are defined from the Bragg
condition and have mN = (3N l, m, n), (l(6= 0), m, and n are integers)
or its permuted vectors (there exist 3! different vectors), definitely
cannot open. In other words, two Bloch modes proportional to |0〉 ∝
eik·x and |mN〉 ∝ ei(k+P

mN )·x never couple with each other despite the
existence of potential UN

L (x). This is one of striking properties of the
multiperiodic lattice, and plays a crucial role to reveal the origin of
localized modes in PFs.
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Figure 4. Density plots of Fourier coefficients LN (m) for
multiperiodic lattices of Stage-1 to -4 in a plane with m = (m1,m2, 0).
Abscissa and ordinate are assigned by m1 and m2, respectively.
Brighter colors denote bigger values, and LN (m) = 0 exactly holds
on black lines.

As reported in [9, 10], the self-similarity of fractal structures in
real space must be reflected in scattering amplitudes, because the
two quantities can be connected through well-defined mathematical
manipulations. Therefore, it must be expected that this is also the
case for resonant phenomena of PFs, and the self-similarity in the dual
space is certainly observed in LN (m). Figure 5 shows distributions of
L5(m) at various plotting scales. From the upper-left to the lower-
right graphs, the plotting area enlarges by about three times. As
the figure clearly shows, the Fourier coefficients possess evident self-
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Figure 5. Density plots of Fourier coefficients L5(m) for Stage-5
multiperiodic lattice. Graph formats are set to the same as Figure 4.
Evident self-similarity with the homothetic ratio of 3 can be observed.

similarity of the homothetic ratio 3, which equals the inverse of that
in real space. This outcome is thought to be the consequence of the
reciprocal property of the Fourier transformation, and the whole self-
similar property of PFs must be governed mainly by the properties of
multiperiodic lattices only.

4.1.3. Band Theory for a Multiperiodic Lattice (Convolution)

In this section, LN (m) will be derived again using a different approach
from that in the previous subsection because of the need for later
perturbation calculations. One can easily represent LN (m) as an
infinite convoluted sum by utilizing generic properties of the Fourier
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transformation, because LN (x) is represented as the simple product
of L(i)(x), (i = 1, 2, . . . , N), and each L(i)(x) is expressed as the scale
transformation of L(1)(x) as in (3).

LN (m) =
∑

{n(i)}

N∏

i=1

L(1)
(
n(i)

)
δm,ΣN

i=13
i−1n(i) (9a)

L(1)(n) = δ0,n − 1
33

sinc
(π

3
n
)



3

3∑

i=1

δni, 0

sinc
(π

3
ni

) − 2



 (9b)

Here, n(i) = (n(i)
1 , n

(i)
2 , n

(i)
3 ), (i = 1, 2, . . . , N), and each component

takes integral values, namely, n
(i)
j = 0,±1,±2, . . .. In addition,

the summation for {n(i)} in the first equation runs for all suffixes
n

(i)
j , (i = 1, . . . , N, j = 1, 2, 3). (9a) is complicated, and in order to see

what the equation says, we will write down the equation at N = 2, for
example.

L2(m) =
∑

n(1),n(2)

L(1)
(
n(1)

)
L(1)

(
n(2)

)
δm,n(1)+3n(2)

Again, (9b) corresponds to the Fourier coefficient for potential L(1)(x)
depicted in Figure 3. Stated previously, the potential is built up by
superposing three prisms parallel to each coordinate axis, removing
the overlap between them so as to take 1 at the inside of the
hexapod, and subtracting the hexapod potential from the uniform
background with unity. (9b) reflects this construction procedure.
Other constructions can be devised; however, the same expressions
must result. m1 satisfying L(1)(m) = 0 is identified from (9b), and
m1 = (3l, m, n), (l(6= 0),m, n are integers) or permuted vectors of m1

(there exist 3! different vectors) result. In addition, mN that meets
the condition LN (m) 6= 0 can be determined from (9a) as follows:

mN = n(1) + 3n(2) + 32n(3) + . . . + 3N−1n(N).

These findings lead to the same conclusions as the recursive
calculations in the previous section.

4.2. Resonance Conditions for a Paraelectric Cube

In this section, we will investigate resonant modes generated in an
isotropic paraelectric cube with side length d and permittivity εr, by
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applying an approximation calculation method known as the Marcatili-
Itoh-Chang method [11, 12], treating electromagnetic fields in the cube
as those for a straight rectangular dielectric waveguide with two open
ends. According to the method, the cubic resonator generates two sets
of modes, the TE-mode TEx

pqr and the TM-mode TMx
pqr, assuming that

the waveguide and the dominant polarization for the modes are parallel
to the z-axis and x-axis, respectively. (Note that suffixes p, q, and r
are integers greater than zero, and absolutely determined from three
resonance conditions.) Moreover, one more approximation, regarding
evanescent fields around the surface of the cube as negligibly small, is
imposed in this report to simplify discussion.

Following the literature with reflecting these assumptions,
resonance conditions for both TE- and TM-modes can be expressed
in terms of wavenumber Qi = (2π/d) i defined by a vector i = (p, q, r)
(in the present case, p, q, and r are integers or half-odd integers but
they do not take zero simultaneously) as follows:

|Qi|2 = εr k0
2, (10)

where k0 is the wavenumber in free space and satisfies ω = c k0

(c: Speed of light). To explain the vector i in more detail, we
should note that field distributions in the xy-plane are obtained from
single scalar potential Φ(x, y) [13]. Suffix p takes a half-odd integer
when Φ(x, y) becomes an even function with respect to the x-axis
(Φ(−x, y) = Φ(x, y)), and an integer otherwise (namely, the odd case
Φ(−x, y) = −Φ(x, y)). Similarly, according to the parity of the fields
with respect to the z-axis, suffix r also takes integer or half-integer
values. However, suffix q takes only integral values.

Then, the resulting set of modes {|i)mxz} associated with the
wavenumber Qi are given as follows:

|i)mxz = C(x)
∑

lmn
(l,m,n=0,1)

Hm
xz(PlmnQi) e iPlmnQi·x . (11)

In this equation, the superscript “m” distinguishes between TE-
and TM-modes, and “x” and “z” denote the parity with respect
to the x- and z-axes elucidated above. In addition, Hm

xz(h) means
a vector-valued expansion coefficient for magnetic fields associated
with eigenmode e iQh·x, and is a function of wavenumber h only.
Plmn is a coordinate inversion operator, and acts on any vector
v = (v1, v2, v3) as Plmnv = ( (−1)lv1, (−1)mv2, (−1)nv3 ). (11) simply
says that the resonant modes can be regarded as standing waves
generated by 8 plane waves with wavenumbers 2π/d (±p,±q,±r). Note
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that {Hm
xz(Qi) eiQi·x} form an orthonormal set, if all Hm

xz(Qi) are
normalized so as to have unit norm |Hm

xz(Qi)| = 1.
Two findings important for later arguments can be extracted

from (10) and (11). First, resonant modes in the cube are equivalent to
the linear combination of plane waves proportional to the Bloch modes
satisfying the Bragg condition and propagating in the multiperiodic
lattice, as previously analyzed (Note that the Bloch modes have
wavenumber k = −1/2Pn = P−n/2 under the Bragg condition, and
that {Pn/2} ⊃ {Qi}). Therefore, one uses the band theory only for
the multiperiodic lattice already in hand, in order to investigate the
coupling between the Bloch and resonant modes, despite the fact that
a PF is not a periodic structure but isolated. Second, since it can be
seen that the Bloch mode satisfying the Bragg condition manifestly
degenerates to the resonant mode specified by the same index as the
Bloch, they could easily couple in PFs without particular restrictions,
and localized modes in PF never exist unless such restriction exists.
Fortunately, the existence of the restrictions is demonstrated in
subsequent sections.

4.3. Mode Coupling between Both Modes

4.3.1. Perturbation Theory 1: Correction to Bloch Modes

According to the strategy stated in Section 3, the next aim is to
seek conditions such that the Bloch and resonant modes never couple
in PFs. If these could be found, it can be deduced that certain
resonant modes might survive as localized modes in PFs. To carry
out the search, a perturbative treatment is thought to be optimum.
Therefore, we first derive a perturbation-approximated representation
of the correlation amplitude between the two modes. To begin, we
will take Maxwell’s equation for PFs by replacing LN (x) in (7) with
MN (x). Next, we rewrite (4) using ∇ × {

f(x)∇× } ≡ D
(
f(x)

)
and magnetic field H(x) ≡ |ϕ 〉〉 which is a solution asymptotically
closing to a Bloch mode, for easy notation. Then, in order to treat the
correlation between the two modes as the influence of potential MN (x)
upon the Bloch modes, if one regards MN (x)−LN (x) as a first-order
infinitesimal quantity, Maxwell’s equation for MN (x) can be described
as

{D(1)− ε−1
f D(LN )} |ϕ 〉〉−ε−1

f D(V ) |ϕ 〉〉 = W |ϕ 〉〉 . (12)

Here, V ≡ MN − LN = LN (C − 1) (hereinafter, position x will be
suppressed). After inserting |ϕ 〉〉 and W which are perturbatively
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expanded by Bloch modes {|n 〉〉} defined in Section 4.1.1 and
corresponding correction terms

|ϕ 〉〉 = |m 〉〉+
∑
n

cmn|n 〉〉+ . . . (13a)

W = W
(0)
m + W

(1)
m + . . . (13b)

into (12), and simplifying using (14a); Maxwell’s equation for the
zeroth order Bloch modes {|n 〉〉} in multiperiodic lattice LN (x),
and (14b); the orthogonality relation for the modes,

{
D(1)− ε−1

f D
(
LN

)}
|m 〉〉 = W

(0)
m |m 〉〉 (14a)

〈〈m |n 〉〉 = δmn, (14b)

and then taking an inner product with the resonant mode |i) (note
that suffixes “m” and “xy” for the mode classification and parity,
respectively, are also suppressed), and then picking up the first order
infinitesimal quantities, finally the following correlation amplitude
between the two modes is derived.

(i|ϕ 〉〉 = (i|m 〉〉+ε−1
f

∑
n

〈〈n|D(V )|m 〉〉
W

(0)
n −W

(0)
m

(i|n 〉〉 (15)

Hereinafter, we should focus on the situation where the Bragg
condition for LN (x) is satisfied, because we must analyze the mode
coupling between the Bloch and the resonant modes, and because
the both modes indeed degenerate in this situation as stated below.
In this situation, the following consequences result. First, if one
chooses |n 〉〉 and |m 〉〉 having the same eigenvalue, the second term
of the right-hand-side of (15) becomes dominant, and the first term
is negligibly small, because W

(0)
n = W

(0)
m is satisfied. This is the

same argument involved in the conventional approximation imposed
for deriving band gaps in Section 4.1.1. Second, as concluded in
Section 4.2, resonant modes {|i)} are approximately equal to the linear
combination of degenerating Bloch modes {| i 〉〉}. Accordingly, one
can replace |i) in (15) with the associated | i 〉〉 (this point is quite
significant for reducing subsequent perturbation calculations). Third,
when calculating inner products between two Bloch modes |n1 〉〉 and
|n2 〉〉, one can generically obtain the same results as those calculated
from |0 〉〉 and |n1 − n2 〉〉 because of the translational symmetry for
lattices. Incorporating the above three facts into (15), the correlation
amplitude can be written only for Bloch modes as follows.

(i|ϕ 〉〉 ∝ ε−1
f 〈〈n|D(V )|0 〉〉 〈〈 i|n 〉〉 (16)
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It can be determined from this expression that resonant mode |i)
never couples in PFs to |ϕ 〉〉 which is a Bloch mode receiving the first
perturbation correction, as long as 〈〈n|D(V )|0 〉〉 = 0 holds, even if
field distributions of the resonant mode perfectly coincide with those
of the Bloch mode, namely 〈〈 i|n 〉〉 6= 0 (〈〈 i|n 〉〉 6= 0 means a mode
coincidence i = n because of (5b) expressing the orthogonality of Bloch
modes). Therefore, if the mode | i 〉〉 satisfying 〈〈 i|D(V )|0 〉〉 = 0 could
be concretely identified, it leads to the crucial finding that there exist
resonant modes that never couple to Bloch modes and that remain
localized modes in PFs, and hypothesis (2) is thereby illustrated.

We proceed to reveal the physical meaning of 〈〈 i|D(V )|0 〉〉 =
0 by concrete calculation. If one uses the expression of
Bloch modes including magnetic polarization, namely |m 〉〉 ∝
H(m) ei(k+Pm)·x, (14a) and (14b), and the following formulae
concerning the convolution integral between any two sinc functions:

∫
d3q sinc

d

2
(A− q) sinc

d

2
q =

(
2π

d

)3

sinc
d

2
A,

∫
d3q q sinc

d

2
(A− q) sinc

d

2
q =

(
2π

d

)3 A
2

sinc
d

2
A

= 0 (if A ∈ {Pn}),

(17)

then the following result is obtained.

〈〈 i|D(V )|0 〉〉 = −1
4
|Pi|2 {H∗(i) ·H(0)}LN (i) (18)

From (18), an important consequence, that is, 〈〈 i|D(V )|0 〉〉 ∝ LN (i),
can be extracted, since generally H∗(i) ·H(0) 6= 0. This claims that
the resonant mode specified by index i must become a localized mode
of PFs, if the Fourier coefficient LN (i) for the Bloch mode with the
same index in the multiperiodic lattice of Stage-N equals zero.

One can still proceed to simplify (18) using the fact that
perturbation calculations must be performed within the first-
order approximation, and therefore one ought to eliminate higher
infinitesimal quantities included in LN (i). As in Section 4.1.1, L(1)(0),
L(1)(i), (i 6= 0), and L(1)(j), (i 6= j) are infinitesimal quantities of
the zeroth order, the first order, and orders greater than the second,
respectively. Hence, leaving terms until the first order in LN (i) with
using (9a), the following results are derived.

LN (i) ≈ L(1)(i)
{

L(1)(0)
}N−1

= L(1)(i)
(

20
27

)N−1

(19)
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Consequently, this means 〈〈 i|D(V )|0 〉〉 ∝ L(1)(i). According to
this outcome and the findings derived in Sections 4.1.2 and 4.2,
〈〈 i|D(V )|0 〉〉 = 0 holds for a Bloch mode specified by index vector
i = (3l,m, n), (l(6= 0),m and n are integers) or permuted vectors of
i. As the Bloch mode is proportional to a resonant mode having a
wavenumber Qi = Pi/2, it is deduced that the resonant mode never
couples to Bloch modes then. Also, as investigated in Section 4.1.2,
since band gaps assigned by any index vectors other than those with
at least one component equal to multiples of 3N for the multiperiodic
lattice with Stage-N always appear, it follows that

A localized mode in PFs with Stage-N can be identified as a
resonant mode in a paraelectric cube with the same side length
and permittivity as those of the PF. In addition, the resonant
mode with wavenumber Qi is specified only by index vector i =
(3l,m, n)/2 ( l ( 6= 0), m and n are integers; however, 3l, m and
n unequal to multiples of 3N ) or permuted vectors of i.

is deduced, within the scope of the first perturbation approximation
with evanescent magnetic fields exuding on surfaces of the cube are
omitted. Consequently, the generating mechanism for localized modes
in the PF hypothesized as (2) is now fully justified by the above
calculations. Expressing this outcome simply, as resonant and Bloch
modes cannot interact with each other under the above situation and
they cannot mix together, then the former is isolated and emerges as
a localized mode in band gaps generated by the multiperiodic lattice
contained in the PF.

4.3.2. Perturbation Theory 2: Correction to Resonant Modes

The perturbation calculations performed below are concerned with
the first-order corrections by MN − C to resonant modes {|i)mxz} in
contrast to the preceding subsection. We will investigate how resonant
frequencies for the modes are modified. The calculation processes
taken here are almost the same as the previous ones. Using the same
notation as the previous subsection, and perturbation-approximately
expanding a solution asymptotically closing to resonant mode |i)mxz
and an eigenvalue corresponding to the mode until the first order,
the following expression of the first-order corrected eigenvalue can be
derived from Maxwell’s equiation for MN .

W =
|ωi|2
c2

− ε−1
f (i|D(C{LN − 1}) |i) (20)

Here the suffixes “m” (TE or TM) and “xy” (the parity with respect
to x- and y-axes) are also suppressed as they were above.
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Since it can be seen from (10) that modes with the same
|i| have identical resonant frequencies despite the suffixes “m” and
“xy” (namely, all of them degenerate), and since the perturbation
D(C{LN − 1}) possesses the same point symmetry as mode |i) (i.e.,
introducing the perturbation cannot resolve the degeneracy), one can
proceed with calculations for (20) using only any single term (which,
however, must be normalized so as to have the unit norm) in the
right-hand-side of (11), for example e eiQi·x, (|e|2 = 1). Moreover, as
k+Pi = Qi holds under the Bragg condition, and the field distribution
e eiQi·x equals e|i〉, we can perform subsequent calculations to set
|i) = e|i〉. Then, by applying (17) and |e|2 = 1 to 〈i|D(C{LN − 1}) |i〉
with arbitrary wavenumber k, the following equation is obtained after
some manipulation.

〈i| D(C{LN − 1}) |i〉 = {LN (0)− 1} (k + Pi)2 (21)

Then, setting k so as to satisfy the Bragg condition and inserting (21)
into (20), W can be reduced to the following simple expressions.

W =
(
1− ε−1

f LN (0)
)
|Qi|2 =

(
1

εr(x)

)
|Qi|2 =

1
ε̄r
|Qi|2 (22)

Here, the fact that the first term on the right-hand-side of (20) satisfies
the dispersion relation εr ωi

2 = c2|Qi|2, is used for the reduction. In
addition, the translation of LN (0) into εr(x) can be obtained from (6a)
and (7).

If one writes a resonant frequency for the mode undergoing the
first perturbation correction as ω

(1)
i , the dispersion relation W =

(ω(1)
i )2/c2 ought to hold. Also, replacing ω

(1)
i with the wavenumber

in free space, k0, satisfying the dispersion relation ω
(1)
i = c k0, the

following simple equation results as the resonance condition for the
localized mode in the PF.

|Qi|2 = ε̄r k0
2 (23)

If one focuses on a set of localized modes specified by i =
(3l, 0, 0)/2, (3l 6=(multiples of 3N )), the following resonance conditions,
including (1) as the fundamental resonance, are finally derived for a
PF with Stage-N .

d =
3
2

λ0√
ε̄r
|l|, (l 6= 3N−1) (24)
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At last, the hypothesis (2) is affirmatively and concretely demon-
strated. Also, it was disclosed that localized modes in the PF orig-
inate from the resonant modes in a cubic structure contained in the
PF, which do not couple with Bloch modes propagating in a multiperi-
odic lattice also contained in the PF, and which appear in band gaps
of the lattice.

5. CONSIDERATIONS

As demonstrated in previous sections, the generic resonance condition,
including the experimental result (1), was correctly derived in the
scope of the first perturbation theory by the introduction of a novel
fractal construction method regarding an MS as a composite structure
of a multiperiodic lattice and a paraelectric cube. This demonstrates
hypothesis (2) concerning the generation mechanism of localized modes
in PFs. By admitting this finding, other strange properties of PFs
already reported (i.e., that no localized mode appears in PFs if
the Stage-number becomes less than or equal to one [2], and the
relationship between the arrangement of PFs so as to construct a two-
dimensional lattice and the generation of a localized mode [6]), can be
straightforwardly interpreted as follows. The former can be explained
by a localized mode specified by i = (3l, 0, 0)/2, (3l 6= (multiples of
3N )) appearing in a “closed” band gap formed by Bloch modes if
one sets the Stage-number N to less than or equal to one, and never
being observed. The latter can be explained by the mode coupling
between localized modes originally generated by an isolated PF and
new Bloch modes determined by the arrangement of PFs. Namely,
if one designs the periodicity of the lattice so that the degeneracy
between the localized and the Bloch modes is resolved, the former must
be observed in scattering spectra, because two conditions (coupling
between both modes does not occur, and the former appears in band
gaps defined by the latter) are fulfilled.

Fractal structures different from MSes but constructed by way of
the same geometrical manipulations as shown in this report can also
be easily investigated by tracing the discussions developed above for
mode analysis. For example, resonance conditions for localized modes
in an MS with a self-similarity homothetic ratio other than 1/3 or a
potential other than the hexapod will be easily considered.

Furthermore, we can develop a conjecture about the experimental
result in which a PF shows a resonant Q higher than the one defined
by the inverse of dielectric loss possessed by the composing medium.
Specifically, this could be attributed to the reduction of effective
dielectric loss expected considering that electromagnetic energy might
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localize mainly at the outside of the constituent paraelectric [2, 3, 10],
and to the decrease of radiation losses due to the difficulty in
propagating evanescent fields because PFs are surrounded by band
gaps of the multiperiodic lattice as shown in this report (note that
the latter can be compared to a point-defect resonator embedded
in a photonic crystal [14]). From an engineering viewpoint, this
property of PFs is attractive for realizing a physically small high-Q
resonator; however, some discrepancies of the Q between experimental
and numerical studies were observed [8]. The treatment taken in this
report is still insufficient to tackle this issue, and further theoretical
development should be indispensable.

Few experimental results still cannot be understood only by
the discussion developed in this report, for example, experimental
resonance conditions for higher-order localized modes [5]. In order to
improve the accuracy of analyses, if one relaxes one of above-applied
approximations, that the exudation of evanescent fields existing on
the outsides of the paraelectric cube are negligible small, then the
degeneracy of localized modes is resolved, and more modes ought
to be generated than the experimental result. This conflict might
be solved theoretically if higher-order perturbation corrections or
the non-perturbative treatment are taken into account. In addition,
localized modes in a metallic PF [7] are also outside the scope of this
analysis (one must be able to treat this problem by using spectral
domain approach [15], applied to waveguides with Šerpinskij Carpet-
like sections [16]. Numerical analyses of metallic MSes by the finite-
difference time-domain (FDTD) method are reported in Reference [7]).
Thus we hope that theoretical developments for these lines will progress
further.

6. CONCLUSION

The origin of strange electromagnetic resonant phenomena, known
as localized modes and generated in a photonic fractal that is an
isotropic paraelectric Menger sponge (MS), was theoretically revealed.
Generic resonance conditions embracing experimental results for the
fundamental mode were also derived. These findings could be extracted
by treating the MS not as a fractal structure resulting from the
conventional construction method for a self-similar configuration, but
as a dielectric cube embedded in a multiperiodic lattice represented
as the product of a number of simple lattices with different lattice
constants, and by applying the first perturbation theory for analyzing
the mode coupling among two set of modes supported by the two
constituent structures in the MS. From the results, it was deduced that
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the localized modes can be identified with resonant modes, originally
generated in the dielectric cube, that appear in band gaps generated by
Bloch modes for the lattices and never couple to Bloch modes. Other
experimental results could also be qualitatively understood from the
revealed findings.
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