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Abstract—A Computer Aided Design (CAD) approach based on
Artificial Neural Networks (ANN’s) is successfully introduced to
determine the characteristic parameters of Circular-shaped Microshield
and Conductor-backed Coplanar Waveguide (CMCB-CPW). ANN’s
have been promising tools for many applications and recently
ANN has been introduced to microwave modeling, simulation and
optimization. The Multi Layered Perceptron (MLP) neural network
used in this work were trained with Levenberg-Marquart (LM),
Bayesian regularization (BR), Quasi-Newton (QN), Scaled Conjugate
gradient (SCG), Conjugate gradient of Fletcher-Powell (CGF) and
Conjugate Gradient backpropagation with Polak-Ribiere (CGP)
learning algorithms. This has facilitated the usage of ANN models.
The notable benefits are simplicity & accurate determination of the
characteristic parameters of CMCBCPW’s. The greatest advantage is
lengthy formulas can be dispensed with.

1. INTRODUCTION

The principle of Coplanar Waveguides (CPWs) is that the location
of ground planes is on the same substrate surface as the signal line.
This simplifies the fabrication process by eliminating via holes. CPWs
are often used in designing power dividers, balanced mixers, coupler
and filters. The microshield lines, become a solution to technological
problem in the design of coplanar line due to many advantages such as
the ability to operate without the need for use of air bridges for ground
equalization, reduced radiation loss and reduced electromagnetic
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interference. The other new type of coplanar structure is a Conductor-
Backed CPW (CB-CPW) in which the lower ground plane is bent
within the dielectric in a V-shape. This structure can reduce the
current concentration at both edges of the strip conductor [1] and has
the advantage of mechanical strength, heat sinking ability and lower
characteristics impedance [2]. Addition to these advantages, CB-CPW
also allows easy implementation of mixed coplanar/microstrip lines.
The microshield microstrip lines have been studied using the conformal
mapping technique [3] and the first analytic formulas for calculating
quasi-static parameters of CB-CPWs were given by Lee [4]. The closed
form design equation obtained by CMT is the simplest and most often
used quasi-static method, consists of complete elliptic integrals which
are difficult to calculate even with computer. To avoid this difficulties
this paper proposed CAD-ANN based approach for the calculation
of characteristic parameters of CMCBCPW using the approximate
formulas with the use of one neural model. ANN recently gained
attention as a fast and flexible tool to microwave modeling and design.
Learning and generalization ability, fast real-time operation features
made ANN’s as popular. In microwave circuit components and micro
strip antennas design applications, ANNs have more general functional
forms and are usually better than the classical technique and provide
simplicity in real-time operation.

2. DETERMINATION OF CHARACTERISTIC
PARAMETERS OF CMCBCPW

The configuration taken for study is shown in Fig. 1 where the upper
plane is deformed around inner conductor as circular shaped with the
radius of b. The central conductor of width 2a is placed between the
two planes, of spacing which are located on a substrate of thickness h,
with relative permittivity εr. The distance between the strip conductor
and short line is d. The slots are modeled as magnetic walls [5] and it
is assumed that all metallic conductors are infinitely thin and perfectly
conducting.

Based on this assumption, (to yield excellent results for practical
line dimensions), the effective dielectric permittivity and characteristic
impedance of the line by using conformal mapping are given by [6],

εeff =
C (εr)
C (1)

Z0 =
√

µ0ε0√
εeff C (1)
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Figure 1. The Configuration of circular-shaped microshield and
conductor-backed coplanar waveguide.

The total capacitance of the CMCBCPW,

C (εr) = C1 (εr) + C2 (εr) , and

C1 (εr) = 2ε0εr
K (k)
K (k′)

where k =
tanh (πa/2h)
tan (πb/2h)

C2 (εr) =
πε0εr

ln (2b/a)
,

and K(k) is the complete elliptic integral of first kind and k′2 = 1−k2.

3. ARTIFICIAL NEURAL NETWORKS (ANNS)

ANN’s are biologically inspired computer programs to simulate the way
in which the human brain process information. It is a very powerful
approach for building complex and nonlinear relationship between a
set of input and output data [7, 8]. The power of computation comes
from connection in a network. Each neuron has weighted inputs,
simulation function, transfer function and output. The weighted sum
of inputs constitutes the activation function of the neurons. The
activation signal is passed through a transfer function which introduces
non-linearity and produces the output. During training process,
the inter-unit connections are optimized until the error in prediction
is minimized [9]. Once the network is trained, new unseen input
information is entered to the network to calculate the test output.
There are many types of neural network for various applications
available in the literature. The most commonly used and simplest
network architecture called multilayered perceptron neural network
(MLPNN) used in this work are feed-forward networks and universal
approximators. A MLPNN consists of three layers: an input layer,
an output layer and an intermediate or hidden layer. The neurons in
the input layer only act as buffer for distributing the input signals to
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neuron in hidden layer. Each neuron in hidden layer sums up its input
signal after weighting them and computes it outputs [10, 11]. Training
a network consists of adjusting its weights using learning algorithms.
The different training function used in this work has been explained
briefly as follows:

3.1. Levenberg-Marquardt (LM) Algorithm

This is a least-square estimation method based on the maximum
neighborhood idea and does not suffer from the problem of slow
convergence. The LM method combines the best features of the Gauss-
Newton technique and the steepest-descent method, but avoids many
of their limitations [12, 13].

3.2. Bayesian Regularization (BR) Algorithm

This algorithm updates the weight and bias values according to their
LM optimization and minimizes a linear combination of squared errors
and weights. Here it is assumed that the weight and bias of the
network are random variable. It is used to compute the Jacobean
JX of performance with respect to weight and bias variable X. Each
variable is adjusted according to LM.

dX = − [(JX)× (JX) + λI] [(JX)× E]−1

where E is all errors and I is the identity matrix. Higher values
continue to decrease the amount of memory needed and increase the
training times. It also modifies the linear combination so that at
the end of training the resulting network has good generalization
qualities [14, 15].

3.3. Quasi-Newton (QN) Algorithm

This is based on Newton’s method but doesn’t require calculation
of second derivatives [16]. At each iteration of the algorithm, the
Hessian matrix (Ak) update is computed as a function of the gradient.
The line search function is used to locate the minimum. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed according to
the gradient. Newton’s method often converges faster than conjugate
gradient methods. The weight update for the Newton method is
wk+1 = wk − gk/Ak, Ak is the Hessian matrix of the performance
index at the current value of the weights and biases.
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3.4. Conjugate Gradient of Fletcher-Reeves (CGF)

In this algorithm, a search is performed along with conjugate
directions, which produce generally faster convergence than steepest
decent directions. Each variable is adjusted to minimize the
performance along the search direction. The line search is used to
locate the minimum point. The first search direction is the negative of
the gradient. In succeeding iterations the search direction is computed
from the new gradient and the previous search direction. Fletcher-
Reeves version of conjugate gradient uses the norm square of previous
gradient and the norm square of the current gradient to calculate the
weights and biases. This algorithm updates weight and bias values
according to the formulas proposed by Fletcher and Reeves [17]. The
method of conjugate directions can be used to minimize a positive
definite quadratic function in n steps.

3.5. Scaled Conjugate Gradient (SCG) Algorithm

This algorithm an optimization point of view, learning in a neural
network is equivalent to minimizing a global error function, which is
a multivariate function that depends on the weights in the network.
Many of the training algorithms are based on the gradient descent
algorithm. SCG belongs to the class of conjugate gradient methods,
which show super linear convergence on the most problems. This was
designed to avoid the time-consuming line approach. This algorithm is
an implementation of avoiding the complicated line search procedure
of conventional conjugate gradient algorithm [18].

3.6. Conjugate Gradient Back Propagation with
Polak-Ribiere Algorithm (CGP)

This algorithm is a network training function that updates weight
and bias values according to the conjugate gradient back propagation
with Polak-Ribiere updates. It can train any network as long as its
weight, net input, and transfer functions have derivative functions.
It is used to calculate derivatives of performance with respect to the
weight and bias variables. The line search function is used to locate the
minimum point [19]. In succeeding iterations the search direction is
computed from the new gradient. The search direction at each iteration
is determined by updating the weight vector as: wk+1 = wk + αpk,

where pk = −gk + βkpk−1, βk =
∆gT

k−1gk

gT
k−1gk−1

and ∆gT
k−1 = gT

k − gT
k−1.
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4. DEVELOPMENT OF ANN MODEL FOR CMCBCPW

The MLP neural models have been successfully used to compute
the effective permittivity (εeff ) and characteristic impedances (Z0)
of CMCBCPW. The ranges of input data used are 0 ≤ d/h ≤ 1;
0.1 ≤ a/h ≤ 0.9; 0.5 ≤ b/h ≤ 1.5. Training an ANN involves
presenting those different sets (d/h, a/h, b/h and εr) sequentially
and/or randomly and corresponding calculated values εeff and Z0.
Differences between the target and the actual outputs of the neural
model (εeff -ANN and Z0-ANN) are calculated through the network
to adopt its weights. The adaptation is carried out after presenting
each dataset (d/h, a/h, b/h and εr) until the calculation accuracy
of the network is deemed satisfactory to the intension. The criterion
includes RMS (root mean square) errors for all training set or the
maximum allowable number of epochs to be reached. After many trail
two hidden layered neural model (which provides high accuracy) have
been selected as shown in Fig. 2. The suitable network configuration
was 4×12×10×2. This means that the number of neurons were 4 for
the input layer, 12 & 10 for the first & second hidden layers and 2 for
the output layer. The hyperbolic tangent sigmoid activation functions
were used for input and hidden layers and linear activation function
was used in output layer.

Figure 2. ANN structure for the determination of the characteristic
parameters of CMCBCPW.
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Figure 3. Comparison of the neural and CMT results for the
characteristic impedance of CMCBCPW with a/h = 0.5, εr = 2.55.

Figure 4. Comparison of the neural and CMT results for the
characteristic impedance of CMCBCPW with b/h = 1, εr = 2.55.
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(a)

(b)

Figure 5. Comparison of the neural and CMT results of
characteristics parameters of CMCBCPW with a/h = 0.5, b/h = 1,
εr = 2.55, 3.78, 10 and 12.9. (a) Effective dielectric permittivity and
(b) characteristics impedance.
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Table 1. Training and test RMS errors of the proposed neural model
for εeff and Z0.

Learning
Algorithms

RMS errors in Training RMS errors in Test
εeff Z0 in (Ω) εeff Z0 in (Ω)

LM 1.4378e-017 5.9003e-004 4.3282e-016 0.0008
BR 1.2306e-022 2.5959e-004 2.4774e-018 9.4509e-004
QN 3.7288e-010 0.0012 1.5534e-009 0.1325
SCG 5.4963e-011 0.6202 7.2761e-008 0.9351
CGF 4.3580e-010 1.2007 1.0578e-005 1.5908
CGP 2.0224e-008 1.6227 3.2758e-006 1.8112

5. RESULTS & CONCLUSIONS

To obtain better performance, faster convergence and a simpler
structure, the proposed ANN was trained with six different learning
algorithms. The RMS errors obtained from the neural models for
both the characteristic parameters are given Table 1. The comparison
results of neural models and CMT were shown in Figs. 3, 4 and 5.
The variation of characteristics parameters with respect to d/h for the
values of a/h = 0.5, εr = 2.55, b/h = 0.7, 1 and 1.5 is shown in Fig. 3.

Figure 4 shows the variation characteristic impedance of
CMCBCPW with respect to d/h for b/h = 1, εr = 2.55, a/h = 0.7,
0.5 and 0.3. Figs. 5(a) and 5(b) shows the characteristic parameters
of CMCBCPW with respect to d/h for values of different dielectric
substrates. The best ANN results were achieved from the models
trained with BR and LM learning algorithms. From the figures and
Table 1, it is clearly seen that the neural model results are in very good
agreement with the CMT results.

So the neural model presented in this work is very successful for the
determination of characteristic parameters of CMCBCPW. A distinct
advantage of neural model computation is that after proper training,
a neural network completely bypasses the repeated use of complex
iterative processes for new cases presented to it.

The neural model presented in this paper achieves the
determination of characteristic parameters in simple with high
accuracy. It can be very useful for the development of fast CAD
algorithms since it does not require complicated mathematics way.
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