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Abstract—Multiple-input multiple-output (MIMO) systems play a
vital role in fourth generation wireless systems to provide advanced
data rate. In this paper, a better performance and reduced complexity
channel estimation method is proposed for MIMO systems based on
matrix factorization. This technique is applied on training based
least squares (LS) channel estimation for performance improvement.
Experimentation results indicate that the proposed method not only
alleviates the performance of MIMO channel estimation but also
significantly reduces the complexity caused by matrix inversion. The
performance evaluations are validated through computer simulations
using MATLAB R© 7.0 in terms of bit error rate (BER). Simulation
results show that the BER performance and complexity of the proposed
method clearly outperforms the conventional LS channel estimation
method.
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1. INTRODUCTION

Wireless communication systems continue to strive for ever higher
data rates. To cater to both higher transmission rates and
higher spectral efficiencies in order to increase the performance of
communication systems, the wireless industry is already looking ahead
and embracing multiple-input multiple-output (MIMO) systems [1, 2].
Using multiple transmit as well as receive antennas, a MIMO system
exploits spatial diversity, higher data rate, greater coverage and
improved link robustness without increasing total transmission power
or bandwidth. However, MIMO relies upon the knowledge of channel
state information (CSI) at the receiver for data detection and decoding.
It has been proved that when the channel is Rayleigh fading and
perfectly known to the receiver, the performance of a MIMO system
grows linearly with the number of transmit or receive antennas,
whichever is less [3]. Therefore, an accurate and robust estimation
of wireless channel is of crucial importance for coherent demodulation
in MIMO system.

A considerable number of channel estimation methods have
already been studied by different researchers for MIMO systems.
In certain channel estimation methods, training symbols that are
transmitted over the channels are investigated at the receiver to render
accurate CSI [4–7]. Compared with blind and semiblind channel
estimations, training based estimations generally require a small data
record. Hence, they are not limited to slowly time-varying channels and
entail less complexity. One of the most efficient training based methods
is the least squares (LS) method, for which the channel coefficients are
treated as deterministic but unknown constants [8, 9]. When the full
or partial information of the channel correlation is known, a better
channel estimation can be achieved by minimum mean square error
(MMSE) method [5]. The fundamental difference between these two
techniques is that the channel coefficients are treated as deterministic
but unknown constants in the former, and as random variables of a
stochastic process in the latter. The MMSE estimation has better
performance than LS estimation at the cost of higher complexity as
it additionally exploits prior knowledge of the channel coefficients.
But practically this kind of information is sometimes not known
beforehand, which makes MMSE-based technique infeasible.

The complexity of channel estimation mainly increases due to
matrix inversion. To reduce the complexity of MIMO detection, several
matrix factorization techniques have been applied on MIMO systems
recently. Orthogonal matrix triangularization is a matrix factorization
technique that reduces a full rank matrix into simpler form. Some other
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matrix factorizations like lower upper (LU) decomposition, singular
value decomposition (SVD) can also be used to avoid explicit matrix
inversions. But orthogonal matrix triangularization is preferable over
other methods as it guarantees numerical stability by minimizing errors
caused by machine roundoffs [10]. Matrix factorization is used to
conduct large matrix calculations in alternate ways, and applied for
system complexity reduction. The decoding algorithm for layered
space-time codes based on matrix triangularization is presented in [11].
The authors in [12] proposed a low-complexity maximum-likelihood
decoding approach based on matrix factorization for signal detection
in MIMO systems. In [13], a combined detection algorithm based
on matrix triangularization is proposed to reduce the complexity of
the MIMO detection algorithm. A reduced complexity hardware
architecture for MIMO symbol detector using matrix factorization is
proposed in [14] which supports two MIMO schemes of space-frequency
block codes and space division multiplexing of the codes. However, in
all works matrix factorizations decrease complexity, but performance
improvement is not justified. In this paper, a channel estimation
method is proposed for MIMO system by employing orthogonal matrix
triangularization on LS estimation which minimizes the computational
complexity and at the same time improves the performance. The
coding scheme of MIMO considered in this paper is space-time block
coding (STBC) which is an attractive approach for improving quality
in wireless links [3, 15, 16].

The rest of the paper is organized as follows. In Section 2,
a model of MIMO system employing space-time block coding is
introduced. Section 3 presents a new channel estimation method
applying orthogonal matrix triangularization on LS estimation.
Section 4 comprises a number of experimentations validating the
proposed method, showing its significant advantages over traditional
LS estimation in terms of bit error rate (BER) performance and
complexity improvement. Finally Section 5 highlights some of the
distinct features of the proposed approach and draws the conclusion.

Throughout the paper most notations are standard. Matrices are
represented by boldface capital letters, e.g., A, and vectors are boldface
small letters, e.g., a. Complex conjugate, Hermitian transpose and

Estimated value are denoted by (·)∗, (·)H and
∧
(·) respectively. Im

stands for the m ×m identity matrix, 0 denotes the all zeros matrix
of appropriate dimensions. ‖A‖F is used for the Frobenius norm of a
matrix A. [A]ij stands for the element in the i-th row and j-th column
of A.
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Figure 1. MIMO system using space-time block coding.

2. MIMO SYSTEM MODEL

Data symbols s1, s2, s3, . . . , sL are encoded by S that is the
transmission matrix of an STBC, where [S]ij , i = 1, 2, . . . , Nt and
j = 1, 2, . . . , T represent element of the linear combination of symbols
and their complex conjugates, which are transmitted simultaneously
from the i-th transmit antenna in the j-th symbol periods [17–19]. S
is independent identically distributed (i.i.d) Gaussian random signals
with zero mean and variance matrix given by

E
{
snsH

m

}
=

{
σ2, n = m
0, n 6= m

(1)

where E{·} implies the expectation and σ2 is the power accompanying
one symbol. Since transmission matrix S is orthogonal, SSH =

c
L∑

l=1

|sl|2 INt where c is a constant dependent on S. For example, c = 1

if G2, H3 and H4 and c = 2 if G3 and G4 in [18]. Here L symbols
transmitted over T symbol periods. So the code rate is R = L

T .
The input-output relation of the system can be written as

Y = HS + W (2)

where S is the Nt×T transmit matrix, Y is the Nr×T received matrix
and W is an Nr × T i.i.d. Gaussian random noise matrix with zero
mean. The MIMO channel response is described by Nr × Nt matrix
H. A general entry of the channel matrix H is denoted by {hij}. This
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represents the complex gain of the channel between the j-th transmitter
and the i-th receiver and can be written as

H =




h11 . . . h1Nt

...
. . .

...
hNr1 · · · hNrNt


 (3)

where

hij = α + jβ

=
√

α2 + β2 · ej arctan β/α

= |hij | · ejφij

In a rich scattering environment with no line-of-sight (LOS), α and
β are independent and normal distributed random variables, then
channel gains |hij | are usually Rayleigh distributed.

The signals are transmitted over channel. The combined signal r̃n

at the receiver is

r̃n =


c

Nt∑

i=1

Nr∑

j=1

|hij |2

 sn+w̃n = c ‖H‖2

F sn+w̃n, n = 1, 2, . . . , L (4)

where w̃n is the noise term after combining. At the receiver the
maximum likelihood (ML) decoder is used to detect the transmitted
symbol. The ML decoder can be simplified using the orthogonality of
S. The received symbol, hence, can be determined by

ŝn = arg min
∣∣∣r̃n − c ‖H‖2

F s
∣∣∣
2

(5)

This is a low complexity orthogonal system model that can be
considered highly attractive for practical applications.

3. PROPOSED CHANNEL ESTIMATION METHOD

The knowledge of CSI is required at the receiver to recover the
transmitted signals properly in MIMO systems. In training based
channel estimation, the training symbols that are known to the
receiver are multiplexed along with the data stream and examined
in the receiver to estimate the channel. In practice, training
based LS estimation is more frequently used due to its acceptable
performance. But this estimation involves matrix inversions, which
result in high computational complexity and hence undesirable for
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hardware implementation. The orthogonal matrix triangularization
is a very convenient technique to avoid matrix inversion and is
preferable because of its clever implementation in highly parallel array
architecture [20].

In a Nt×Nr MIMO system, totally (Nt×Nr) channels are needed
to be estimated between transmitters and receivers. The received
training symbols can be expressed as

y = Hx + n (6)

where x is the transmitted training signal, y is the received signal and
n is the noise response. The channel response H is assumed to be
random and quasi-static within two transmission blocks.

The LS approach solves the estimation (6) by minimizing the cost
function as,

J(H) = (y −Hx)H(y −Hx) (7)

The gradient of (7) is given below,

∂J(H)
∂H

= −2xHy + 2xHx (8)

Minimizing the gradient to zero yields the LS estimation Ĥ of the
channel response obtained by

Ĥ =
(
xHx

)−1
xHy (9)

The inversion of xHx in (9) has a high complexity and will
significantly increase when the size of x increases, which is dependent
on the number of transmit antennas. To avoid complexity because
of matrix inversion, orthogonal matrix triangularization is applied on
x. The matrix triangularization can be calculated via Householder
transformation, or Givens rotation. The Givens rotation is a recursive
method that requires a larger number of floating point operations as
compared to the Householder transformation method [10]. In this
work, Householder transformation is chosen to minimize the required
operations. In the Householder approach, a series of reflection matrix
is applied to the matrix, x, column by column to annihilate the lower
triangular elements. The reflection transformations are orthonormal
matrices that can be written as

A =
(
I + βvvH

)
(10)

where v is the Householder vector and β = −2 ‖v‖2
2. For the matrix

x, to annihilate the lower elements of the k-th column the Ak is
constructed as follows:
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i. Let v equal the k-th column of x
ii. Update v by v = x + ‖x‖2 ϕ, where ϕ = [1, 0, . . . , 0]T

iii. Determine β by β = −2 ‖v‖2
2

iv. Ak is calculated according to (10).

The Ak formed from the above steps are pre-multiplied by x
sequentially as follows

An, . . . ,A1x =
[

R
0

]
(11)

where, R is a n × n upper triangular matrix, 0 is a null matrix,
and the sequence of reflection matrices form the complex transpose
of the orthogonal matrix QH , i.e., QH = An, . . . ,A1 and I = QHQ.
Thus (11) can be written as

x = Q
[

R
0

]
(12)

The error function for estimation (9) can be expressed as

ε = y − Ĥx, if ε = 0, then y = Ĥx (13)

By combining (12) and (13) the received signal stands

y = Ĥx = ĤQ
[

R
0

]
(14)

The Hermitian of Q
[

R
0

]
is multiplied to both sides of (14) to derive

the proposed channel estimation

ĤOMT= yQH

[
R
0

]H

(15)

As R is an upper triangular matrix, ĤOMT can be solved through
back-substitution. The proposed estimation is a numerically stable low
complexity solution to channel estimation of MIMO systems.

4. RESULTS AND DISCUSSION

The performance limit of MIMO system for different antenna
configuration is quantified through BER which is particularly an
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attractive measurement for wireless communications. Extensive
computer simulations have been conducted to demonstrate the
performance and complexity of the proposed channel estimation.
The comparisons are investigated by computer simulations using
MATLAB R© 7.0. A system equipped with two transmit antennas and
arbitrary number of receive antennas is considered for this purpose. In
the simulation scenarios the QPSK modulation is used and Rayleigh
fading radio channel is assumed.

4.1. System Performance

In the first simulation, the STBC is applied for two transmit
antennas and different number of receive antennas to demonstrate the
performance of the considered system at perfect channel knowledge.
Fig. 2 shows the BER performance comparison between 2 × 2, 2 × 4
and 2×6 STBC systems. As can be observed from the figure, the 2×6
system performs better than others. For example, the BER of 6×10−3

is achieved at SNR = 1 for 2 × 6 system, whereas the same BER is
achieved at SNR = 3 for 2 × 4 and at SNR = 7 for 2 × 2 system. It
reflects that the BER performance increases as the number of receive
antennas increases for the same number of transmit antennas. But, at
the same time, complexity increases significantly.
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Figure 2. BER comparison
between 2 × 2, 2 × 4, and 2 × 6
STBC.
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Figure 3. Performance compari-
son between different channel es-
timations.

Figure 3 illustrates a performance comparison between different
training based channel estimations for 2 × 4 MIMO system. An
ideal channel estimation is also calculated for comparison. All the
channel estimations use the same training sequence. From the figure,
it can be observed that the BER performance of MMSE estimation is
slightly worse than perfect CSI, but much better than LS estimation.
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Compared with LS-based techniques, MMSE-based techniques yield
better performance because they additionally exploit and require prior
knowledge of the channel correlation and SNR. However, the channel
correlation is sometimes not a priori known, which makes MMSE-based
techniques infeasible. To consider wider MIMO applications, this work
focuses on channel estimation technique that does not require prior
knowledge of the channel correlation i.e., LS channel estimation.

In this paper, the performance of LS channel estimation is
improved by applying orthogonal matrix triangularization as described
in Section 3. Fig. 4 shows the performance comparison between LS and
proposed channel estimation for 2×2 and 2×4 antenna configurations.
Though at lower SNR the BER curves of the proposed estimation
closely follows the traditional LS estimation, but at higher SNR it
outperforms the LS estimation. It is seen that at higher SNR the
performance of the proposed estimation method is 2 dB superior to
the traditional LS method.

Figure 5 demonstrates the performance of the proposed channel
estimation method for different modulation techniques. As can be
observed from the figure, BPSK exhibits better BER performance than
others, but this is unsuitable for high data-rate applications when
bandwidth is limited. Rather QPSK is a better choice as it can be
used either to double the data rate compared to a BPSK system while
maintaining the bandwidth of the signal or to maintain the data-rate
of BPSK but halve the bandwidth needed.
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Figure 4. Performance compari-
son between LS and the proposed
estimation for different MIMO
systems.
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Figure 5. Performance of
the proposed method in different
modulations.
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Table 1. Number of real operations in every complex operation.

Complex

Operations

Number of Real Operations

Multiplication Division
Addition/

Subtraction
Multiplication 4 2 0

Division 6 3 2
Addition/

Subtraction
0 0 2

Table 2. Operation counts for every real operation.

Real Operations Operation Counts
Multiplication/Addition/ Subtraction 1

Division 6
Square Root 10

4.2. Complexity Comparison

In the present simulation scenario, the computational complexity of
the LS estimation and the proposed estimation methods are measured
and compared in terms of number of mathematical operations. For
consistent comparison, the complex operations are converted to
real operation equivalents. Table 1 summarizes the real equivalent
operations for various complex operations. Each type of real operations
has different levels of complexity when implemented in the hardware.
Table 2 shows the number of floating point operations for each real
operation. It should be noted that counting of the number operations is
only an estimate of the computational complexity of the algorithms. A
more exact measurement can be found by implementing the algorithm
in hardware and counting the number of instructions and required
processing time. However, in simulations, floating point operation
counts can give a good indication of the relative complexity of different
algorithms.

Figure 6 depicts the complexity comparison between LS and
the proposed channel estimation in terms of real operations. The
impacts of varying antenna configurations on the estimation methods
are studied. As expected, when the number of antennas increases, the
size of unknown parameters also increases and as a result complexity
increases in both estimation techniques. The general trend of the
proposed method is that it increases almost linearly with the number
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Figure 6. Complexity comparison between LS and the proposed
channel estimation.

of transmit antennas. The LS method increases exponentially at a
significantly higher rate than the proposed methods. Thus the matrix
triangularization channel estimation method is lower in complexity and
proves itself a better choice for low complexity channel estimation.
This feature plus better performance improvement make the proposed
method an attractive solution for MIMO channel estimation.

5. CONCLUSION

In this paper, an orthogonal matrix triangularization based channel
estimation method has been proposed for MIMO systems, and a
detailed analysis and computer simulations are performed. The
proposed method is simulated and compared with LS estimation,
showing a significant improvement in terms of BER performance of
channel estimation. Moreover the computational complexity of the
proposed channel estimation is much lower than conventional LS
estimation. The complexity of the proposed method increases almost
linearly with respect to the number of transmit antenna, whereas
for LS method it increases exponentially. The proposed estimation
appreciably outperforms the LS estimation at a lower complexity with
a better performance and represents a good solution for MIMO channel
estimation technique.
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