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Abstract—In this work, the dyadic Green functions for different parts
of a coaxial tubular filter are derived. Using the obtained data, it
is possible to consider the circuit model of a coaxial tubular filter.
Moreover, the reactance due to the discontinuity of the matching
section (dielectric loaded part) is calculated.

1. INTRODUCTION

Tubular filter is a common kind of filter which belongs to the
classification of lumped element filters. Usually, lumped-element filters
are constructed using parallel-plate chip capacitors and air-wound
inductors soldered into a small housing. Skilled manual labor is
required to build and tune such a filter. Furthermore, it is often
difficult to integrate them into an otherwise all-thin-film assembly [1].
To overcome these difficulties, popular realizations of lumped element
filters are in microstrip or coaxial forms. A possible geometry of a
tubular filter implemented with a coaxial transmission line is shown in
Figure 1.
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The coaxial tubular filter has an advantage of compact structure
and wide relative bandwidth. The structure and its equivalent circuit
are shown in Figure 1. As it can be seen in Figure 1, the structure
can be divided into five parts; the dielectric loaded washer c1, coaxial
transmission line (Cd and Ld), the coupling capacitive C2. In fact
the coupling capacitive part is a coaxial cable with inner radius a
and outer radius b as shown in Figure 1(b), the inductive and the
capacitive parts (Ccap and Lind). These parts are connected to each
other through coupling apertures. The capacitance of this coupling
aperture is Cc = 2πεd/ln( b

b−t) [2], where the parameters t and d are
shown in Figure 1.

There are some analysis methods in literature concerning tubular
filters [2–6], however, no effort has been made in order to full-wave
analyze the coaxial structure. In the current work, the dyadic Green
function of the three sections shown in Figure 1 has been found. This
would be helpful in designing the capacitances and inductances of the
structure. The dyadic Green function is a powerful means of analyzing
electromagnetic problems, especially when the orientation of the source
is not prescribed. Moreover, it is very suitable to be utilized in EM-
softwares. In what follows dyadic Green function of different parts of
a coaxial tubular filter is found.
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Figure 1. (a) Geometry of a coaxial cable tubular filter, (b) extended
view of the coupling capacitive part, and (c) the equivalent circuit of
the structure.

Figure 2. The dielectric loaded coaxial cable.

2. DYADIC GREEN FUNCTION OF THE
DIELECTRIC-LOADED PART

Figure 2, shows the schematic of the dielectric loaded part, this part
is usually used to match the filter to the input connector.

To derive the dyadic Green function of this configuration, the
method of scattering superposition [7] is used as follows

G11
e (R, R

′) = Ge1(R, R
′) + G11

es(R, R
′) (1)

G12
e (R, R

′) = G12
es(R, R

′) (2)

G13
e (R, R

′) = G13
es(R, R

′) (3)

where Gij
e (R, R′) is the electric dyadic Green function in medium j

due to the source in medium i. Ge1(R, R′) is the electric dyadic Green
function of the first kind i.e., Ge1(R,R′) = 0 on the boundary, and is
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defined as follows [7]

Ge1 =− 1
k2

_
z

_
zδ(R−R′) + C00 N

eoo
(±k) N

′
eoo(∓k)

+
∑

n,λ

N eonλ(±kλ)N ′
eonλ(∓kλ)+

∑
n,µ

M eonµ(±kµ)M ′
eonλ(∓kµ) (4)

in which

C00 = 1/(4π2I0) (5)

N eoo(±k) =
1
|k|∇ ×∇× (ln(r)ejkz ẑ) (6)

Meonλ(±kλ) = ∇×
[
Sn(λr) cos

sin nφej±kλz ẑ

]
(7)

N eonλ(±kλ) =
1
κλ
∇×M eonλ(±kλ) (8)

M eonµ(±kµ) = ∇×
[
Tn(µr) cos

sin nφej±kµz ẑ

]
(9)

N eonµ(±kµ) =
1
κµ
∇×M eonµ(±kµ) (10)

where

κλ = (λ2 + h2)1/2 (11a)

κµ = (µ2 + h2)1/2 (11b)

Sn(λr) = Yn(λa)Jn(λr)− Jn(λa)Yn(λr) (12)
Tn(µr) = Y ′

n(µa)Jn(µr)− J ′n(µa)Yn(µr) (13)

Jn and Yn denote, respectively, Bessel function and Neumann function
of integral order. The eigenvalues λ and µ are solutions of characteristic
equations, i.e.,

Sn(λb) = Yn(λa)Jn(λb)− Jn(λa)Yn(λb) = 0 (14)
T ′n(µb) = Y ′

n(µa)J ′n(µb)− J ′n(µa)Y ′
n(µb) = 0 (15)

where the primed functions denote the derivative of these functions
with respect to their arguments µa or µb. A complete tabulation
of these values is not yet available [7]. For a = 4.72mm and
b = 12.67mm, some of these eigenvalues can be obtained from Sn(λb)
and T ′n(µb) which are plotted in Figures 3(a) and 3(b).
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Figure 3. Eigenfunctions of coaxial cable with a = 4.72mm and
b = 12.67mm.

As it can be observed in Figure 3, the eigenvalues corresponding
to different n’s, are getting close as µ and λ increases.

Ges
ij are assumed in following forms

Ges
11 = jπ

[
C00N̄eoo(−k1)N̄ ′

eoo(−k1)A1

+
∑

n,λ

Cnλ

kλ1
N̄eonλ(−kλ1)N̄ ′

eonλ(−kλ1)A2

+
∑
n,µ

Cnµ

kµ1
M̄eonµ(−kµ1)M̄ ′

eonλ(−kµ1)A3

]
(16a)
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Ges
12 = jπ

[
C00

{
B1N̄eoo(−k2) + B2N̄eoo(−k2)

}
N̄ ′

eoo(−k1)

+
∑

n,λ

Cnλ

kλ1

{
B3N̄eonλ(kλ2) + B4N̄eonλ(−kλ2)

}
N̄ ′

eonλ(−kλ1)

∑
n,µ

Cnµ

kµ1

{
B5M̄eonµ(kµ1)+B6M̄eonµ(−kµ1)

}
M̄ ′

eonλ(−kµ1)
]
(16b)

Ges
13 = jπ

[
C00N̄eoo(k1)N̄ ′

eoo(−k1)C1

+
∑

n,λ

Cnλ

kλ1
N̄eonλ(kλ1)N̄ ′

eonλ(−kλ1)C2

∑
n,µ

Cnµ

kµ1
M̄eonµ(kµ1)M̄ ′

eonλ(−kµ1)C3

]
(16c)

and

Gms
ij = ∇×Ges

ij (17)

kµ1,2 =
(
k2

1,2 − µ2
)1/2 (18)

kλ1,2 =
(
k2

1,2 − λ2
)1/2 (19)

k1,2 = ω
√

µ0ε1,2 (20)

where Ai, Bi and Ci’s are unknown coefficients to be determined.
Using (1)–(16), subject to the boundary conditions

ẑ ×
(
Ge

11 −Ges
12

)∣∣∣
z=0

= 0 (21)

ẑ ×∇×
(
Ge

11 −Ges
12

)∣∣∣
z=0

= 0 (22)

ẑ ×
(
Ge

12 −Ges
13

)∣∣∣
z=t

= 0 (23)

ẑ ×∇×
(
Ge

12 −Ges
13

)∣∣∣
z=t

= 0 (24)

The calculated coefficients are
For TEM modes

B1 = 2k1(k1 − k2)/∆ (25)
B2 = 2k1(k1 + k2)/∆ (26)
A1 = B2 −B1 + 1 (27)

C1 = −k2

k1
ej(k2−k1)tB1 − k2

k1
e−j(k2+k1)tB2 (28)
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where
∆ = −(k2 − k1)2e−jk2t + (k2 + k1)2ejk2t (29)

For TE modes

B3 = 2k1kλ1(k1kλ2 + k2kλ1)/∆1 (30)
B4 = 2k1kλ1(k1kλ2 − k2kλ1)/∆1 (31)

C2 =
kλ2

kλ1

(
ej(kλ2−kλ1)tB3 − e−j(kλ2+kλ1)tB4

)
(32)

A2 = 1− kλ2

kλ1
(B4 −B3) (33)

∆1 = 4k1k2kλ1kλ2 (34)

And for TM modes

B5 = 2k1kµ1(k1kµ1 + k2kµ2)/∆2 (35)
B6 = 2k1kµ1(k2kµ2 − k1kµ1)/∆2 (36)

C3 =
kµ2

kµ1

(
ej(kµ2−kµ1)tB5 − e−j(kµ2+kµ1)tB6

)
(37)

A3 = −1 + B5 + B6 (38)
∆2 = 4k1k2kµ1kµ2 (39)

Once the dyadic Green function of the structure is found, assuming
a current excitation J̄i(R̄) as

J̄i(R̄) =
δ(z)δ(φ)
(b− a)r

r̂ (40)

E(R) is obtained from

E(R) = jωµ0

∫∫∫

V

J i(R) ·Ge(R, R
′)dR′ (41)

To obtain the impedance at z = 0, which its imaginary part is the
reactance due to discontinuity of the waveguide, the complex power
flow at z = 0 is used as follows

P =
∫∫

S

(
Ē

(
R̄

)× H̄∗ (
R̄

)) · ds = Z|I|2 = Z (42)

In Equation (42), J̄i is chosen such that I =
∫∫
s

J̄i · ds = 1 and

Z is readily obtained. As an example, assume a coaxial cable with
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Figure 4. The impedance of the structure of Figure 2, at z = 0 for
a = 4.72 mm, b = 12.67mm and εr = 2.2.

a = 4.72mm, b = 12.67mm and εr = 2.2 (see Figure 2). For these
values, the impedance at z = 0 is plotted in Figure 4.

It can be inferred from Figure 4 that for t = 0, the impedance at
z = 0 is the same as the characteristic impedance of a coaxial cable
with the given dimensions. Moreover, the structure of Figure 2 is given
in [7] as coaxial-line beads. The optimum dielectric thickness which
renders minimum reflection in an infinite coaxial cable is t = λ

2
√

εr
[7],

which εr is the relative permittivity of the bead. For εr = 2.2, it can be
seen that (t/λ)opt = 1

2
√

2.2
= 0.337 which exactly matches the point of

zero reactance in Figure 4 with a real part equal to the characteristic
impedance of the coaxial line.

3. DYADIC GREEN FUNCTION OF THE CAPACITIVE
PART

The capacitive part of the coaxial tubular filter shown in Figure 2
is indeed a cylindrical cavity. The dyadic Green function of such a
structure is available [8].

4. DYADIC GREEN FUNCTION OF THE INDUCTIVE
PART

The geometry of the inductive part is shown in Figure 5.
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Figure 5. The inductive part of the coaxial tubular filter.

In this structure, both TE and TM modes are excited
simultaneously. Following a similar procedure as in Section 3, we have

Ges
12 =

∑
n,µ


A

1
e
o

M̄
λo2

o
e

(
z

c− z

)
+ B

1
e
o

N̄
λo2

e
o

(
z

c− z

)

 M̄ ′

λo2
o
e

(
c− z′

z′

)

+


A

2
e
o

M̄
λo2

e
o

(
z

c−z

)
+B

2
e
o

N̄
λo2

o
e

(
z

c−z

)

N̄ ′

λe2
o
e

(
c−z′
z′

)
(43a)

M̄
λo2

o
e

(
z

c− z

)
= ∇×

[
S1n(λ2r)

cos
sin nφ cos kλ

z
c− z

]
(43b)

N̄
λe2

o
e

(
z

c− z

)
=

1
k
∇×∇×

[
T1n(λ2r)

cos
sin nφ cos kλ

z
c− z

ẑ

]
(43c)

T1n(λ2r) = Y ′
n(λ2b)Jn(λ2r)− J ′n(λ2b)Yn(λ2r) (43d)

S1n(λ2r) = Yn(λ2b)Jn(λ2r)− Jn(λ2b)Yn(λ2r) (43e)

Geo
11 =

∑
n,µ


M̄o

e
λo2

(
z

c− z

)
+ N̄e

o
λo2

(
z

c− z

)

 M̄ ′

λo2
o
e

(
c− z′

z′

)

+


M̄e

o
λo2

(
z

c− z

)
+ N̄e

o
λo2

(
z

c− z

)

 N̄ ′

o
e

λe2

(
c− z′

z′

)
(44a)

M̄o
e

λo2

(
z

c− z

)
= ∇×

[
Jn (λ2r)

cos
sin nφ cos kλ

z
c− z

_
z

]
(44b)
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N̄o
e

λe2

(
z

c− z

)
=

1
k
∇×∇×

[
Jn (λ2r)

cos
sin nφ cos kλ

z
c− z

ẑ

]
(44c)

Ges
11 =

∑
n,µ


A

3
e
o

M̄o
e

λo1

(
z

c−z

)
+B

3
e
o

N̄e
o

λo1

(
z

c−z

)

 M̄ ′

λo2
o
e

(
c−z′
z′

)

+


A

4
e
o

M̄e
o

λo1

(
z

c−z

)
+B

4
e
o

N̄o
e

λo1

(
z

c−z

)

 N̄ ′

λe2
o
e

(
c−z′
z′

)
(45)

It should be noted that the generating functions in (43)–(44) are
chosen such that they satisfy the boundary conditions at z = 0, z = c
and r = b. The boundary condition at the interface, r = a, requires

r̂ ×
(
Ge

11 −Ges
12

)∣∣∣
r=a

= 0 (46)

and
r̂ ×∇×

(
Ge

11 −Ges
12

)∣∣∣
r=a

= 0 (47)

These conditions enables us to determine the scattering
coefficients Aieo and Bieo . To determine the eigenvalues of the structure
the roots of the following determinant should be found
∣∣∣∣∣∣∣∣∣∣∣∣

∂TTn(λ2r)
∂r ∓jkλSSn(λ2r)

∂Jn(λ1r)
∂r ±jkλJn(λ1r)

0 λ2
2

∂TTn(λ2r)
∂r 0 λ2

1Jn(λ1r)

∓jkλk2SSn(λ2r) k2
∂TTn(λ2r)

∂r ±jkλk1Jn(λ1r)
∂Jn(λ1r)

∂r

k2λ
2
2SSn(λ2r) 0 λ2

1Jn(λ1r) 0

∣∣∣∣∣∣∣∣∣∣∣∣
r=a

=0

This completes our derivation for various dyadic Green functions
of the coaxial tubular filter.

5. CONCLUSION

In this paper, dyadic Green functions of coaxial tubular filters have
been obtained. This filter is a popular form among lumped element
filters. First, the reactance due to the discontinuity of input (dielectric



Progress In Electromagnetics Research M, Vol. 8, 2009 205

loaded) part of the filter was considered. This part is necessary in order
to match the filter to the input connector. Then, the dyadic Green
function of inductive and capacitive parts of the structure was found.
The analysis available in previous works only considers the dominant
mode of the structure; however, using dyadic Green functions, when
higher order modes are included, it is obvious that more accurate
results can be achieved.
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