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Abstract—In order to obtain a unified approach for the Finite-
Difference Time-Domain (FDTD) analysis of dispersive media
described by a variety of models, the coordinate stretched Maxwell’s
curl equation in time domain is firstly deduced. Then the
FDTD update formulas combined with the semi-analytical recursive
convolution (SARC) in Digital Signal Process (DSP) technique for
general dispersive media are obtained. In this method, the flexibility of
FDTD in dealing with complicated object is retained; the advantages of
absolute stability, high accuracy, less storage and high effectiveness of
SARC in treating the linear system problem are introduced, and a more
unified update formulation for a variety of dispersion media model
including Convolution Perfectly Matched Layers (CPML) absorbing
boundary is possessed. Therefore it can be applied to analysis of
general dispersive media provided that the poles and corresponding
residues in dispersive medium model of interest are given. Finally,
three typical kinds of dispersive model, i.e., Debye, Drude and
Lorentz medium are tested to demonstrate the feasibility of presented
approach.

1. INTRODUCTION

The vast majority of medium in nature is frequency dependent in
a certain extent when it interacts with electromagnetic waves (or
light), such as water, soil, human tissue, plasma and metals. For
different media, its dispersive property in frequency domain can be
characterized by different model, such as Debye model, Drude model,
Lorentz model. When FDTD method has been applied to the analysis
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of electromagnetic properties of this media, the constitutive relations
of dispersive media must be specially treated in which the convolution
of electric field with causal susceptibility in time domain usually
requires large storage and time consuming computation. Nowadays
several frequency-dependent FDTD methods have been developed,
such as Recursive Convolution (RC), Auxiliary Differential Equation
(ADE), and Z transform techniques. However, these approaches
need deduce the corresponding convolution formulation for different
dispersive models in order to obtain the corresponding FDTD update
equation. This makes the lack of common procedures, and causes
inconvenience to the application [1–5].

On the other hand, it is known that the simulation of FDTD is
only restricted in a finite domain. The absorbing boundary condition
must be given on the truncated boundary of computation domain
for an open region problems. Therefore, the study of absorbing
boundary has been one of the focus problems, since FDTD scheme was
proposed [6–11]. At present, the Convolutionally perfectly Matched
Layer (CPML) is one of the most commonly used absorbing boundary
because its formulation is more accurate than the classical UPML,
more efficient, and better suited for the application of domains with
general materials [12–15]. However, due to the field updates related
with dispersive media in computation region, the different CPML field
updates are also needed for different kinds of dispersive model and thus
the poor versatility is possessed.

In this paper, a unified time-domain form for different dispersive
model is firstly given in response to these issues, then the stretched-
coordinate Maxwell’s curl equations in time-domain are deduced,
in which the stretched-coordinate variables are Complex Frequency-
Shifted (CFS) tensor. Combining with the Semi-Analytical Recursive
Convolution (SARC) algorithm [16, 17] in DSP techniques, a unified
FDTD algorithm for analysis of electromagnetic characteristic of
dispersive objects is proposed, namely SARC-FDTD algorithm. In
this scheme, the absolute stability, high accuracy, less storage and high
effectiveness are retained, and a unified update formulation for general
dispersive media, i.e., Debye, Drude, Lorentz and hybrids model is
possessed. The SARC FDTD can therefore be applied to the analysis
of general dispersive media provided that the poles and corresponding
residues in dispersive medium model of interest are given. It is for this
reason also, the FDTD update formulation in CPML region also has
the unified form no matter what kind of dispersive media is truncated
by CPML. Finally, the validity of proposed SARC FDTD approach is
tested with three typical kinds of dispersive model, i.e., Debye, Drude
and Lorentz medium.
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2. A TIME-DOMAIN UNIFIED MODEL FOR
DISPERSIVE MEDIA

For linear dispersive media, some model such as Debye, Drude,
Lorentz, etc. are frequently used. The electrical susceptibility function
of three typical kinds of models in frequency domain can be expressed,
respectively, as the following form:

(1) Debye model

χ (ω) =
Q∑

q=1

∆εq

1 + jωτq
=

Q∑

q=1

∆εq/τq

jω + 1/τq
(1)

where ∆εq = εs,q − ε∞,q, εs,q is the static permittivity, ε∞,q is
relative permittivity at infinite frequency, and τq is the relaxation time
constant.

(2) Lorentz model

χ (ω) =
Q∑

q=1

∆εqω
2
q

ω2
q + 2jωδq − ω2

=
Q∑

q=1

∆εqω
2
q

(jω)2 + 2δq (jω) + ω2
q

(2)

where ∆εq = εs,q−ε∞,q as above, ωq is the resonant angular frequency,
δq is the damping constant.

(3) Drude model

χ (ω) =
Q∑

q=1

ω2
q

jωvc,q − ω2
=

Q∑

q=1

ω2
q/vc,q

jω
−

Q∑

q=1

ω2
q/vc,q

jω + vc,q
(3)

where ωq is the angular plasma frequency, vc,q is the collision frequency.
Let s = jω, the time-domain expression corresponding to (1) can

be obtained by Laplace transform as,

χ (t) =
Q∑

q=1

Hqe
−αqtu (t) (4)

where, u (t) is the unit step function, αq = 1/τq, Hq = ∆εq/τq is poles
and corresponding residues of (1), respectively. When poles are real
in (2), it can be transformed into Debye model as (1). When poles
are complex in (2), it will be a pair of complex conjugate poles. By
taking Laplace transform, the corresponding time-domain expression
of (2) can be obtained as

χ (t) =
Q∑

q=1

Hqe
−αqt sin (βqt) u (t) (5)
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where αq = δq, βq =
√

ω2
q − δ2

q , Hq = ∆εqω
2
q

/
βq. Furthermore we may

rewriting (5) in a complex exponential function form and then obtain

χ (t) =
Q∑

q=1

Im
[
Gqe

−γqtu (t)
]

(6)

where Im is the imaginary operator, and γq = αq − jβq, Gq = Hq.
Comparing (4) with (6), it can be observed that the time-domain
relation of Debye model as shown in (4) can also be rewritten as (6),
if letting γq = αq, Gq = Hq.

For Drude model shown in (3), it can be considered as two
additive Debye models, that the pole is γ1 = 0, γ2 = −vc,2 and the
corresponding residue is G1 = G2 = ω2

1

/
vc,1, respectively. It can also

be expressed as the following form:

χDrude (ω) =
σp

jωε0
−

Q∑

q=1

ω2
q/vc,q

s + vc,q
(7)

where σp =
Q∑

q=1

(
ω2

qε0

)/
vc,q. The second term on the right-hand side

of (7) can be considered as the Debye model of γq = −vc,q and
Gq = ω2

q

/
vc,q, respectively. In a word, Drude model also can be

expressed as the exponential function in time domain as shown in (6).
For the dispersion model expressed as a rational fraction, it can

always be expressed as the sum of (1) and (2) by rewriting it in the
fractional fraction form. So (6) can be viewed as time-domain unified
form of susceptibility function for dispersion medium. It can be applied
to the analysis of general dispersive media including Debye, Drude
and Lorentz provided that the poles and corresponding residues in
dispersive medium model of interest are designated.

3. STRETCHED COORDINATE MAXWELL’S
EQUATION IN TIME-DOMAIN

In order to obtain a unified FDTD update formulation in the entire
computation region including CPML, we first consider the stretched-
coordinate Maxwell’s curl equation.

For an isotropic, conductive, inhomogeneous, linear permittivity
dispersive medium, the stretched-coordinate Maxwell’s curl equations
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can be expressed as

∂ ~D
/

∂t + σ ~E = ∇̃ × ~H (8)

−∂ ~B
/

∂t− σm
~H = ∇̃ × ~E (9)

The operator ∇̃ expressed in terms of the complex coordinate-
stretching variables sw (w = x, y, z) is [3]

∇̃ = x̂
1
sx

∂

∂x
+ ŷ

1
sy

∂

∂x
+ ẑ

1
sz

∂

∂x
(10)

For a general medium, by using Complex Frequency-shifted (CFS)
tensor coefficient the complex coordinate-stretching variable is chosen
as [11]

sw = κw +
σw

αw + jωε0
(w = x, y, z) (11)

For simplicity, suppose the permeability µ does not change with
frequency, thus

~B = µ ~H (12)
~D (ω) = ε0 (ε∞ + χ (ω)) ~E (ω) (13)

where ε0 is permittivity of free space, ε∞ is the infinite frequency
relative permittivity, and χ is the electric susceptibility, respectively.
To convert (8) and (9) into time-domain, it is necessary to derive the
time-domain expression of (13) and 1/sw in (11).

By taking the Fourier transform, (13) becomes

~D (t) = ε0ε∞ ~E (t) + ε0χ (t) ∗ ~E (t) (14)

where ∗ denotes convolution operator. The time-domain expression
corresponding to 1/sw can be obtained by Fourier transform as in [11]

s̄w (t) =
δ(t)
κw

− σw

ε0κ2
w

e
−

(
σw

ε0κw
+αw

ε0

)
t
u(t) (15)

Finally, substituting (14) and (15) into (8) and (9), we obtain (for the
sake of brevity, we will only consider x component)

ε0ε∞
∂Ex

∂t
+ ε0χ ∗ ∂Ex

∂t
+ σEx =

1
κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ ζz ∗ ∂Hy

∂z

−ζy ∗ ∂Hz

∂y
(16)

−µ
∂Hx

∂t
− σmHx =

1
κy

∂Ez

∂y
− 1

κz

∂Ey

∂z
+ ζz ∗ ∂Ey

∂z
− ζy ∗ ∂Ez

∂y
(17)
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where
ζw(t) =

σw

ε0κ2
w

e
−

(
σw

ε0κw
+αw

ε0

)
t
u(t) (18)

These are the stretched-coordinate formulations of Maxwell’s curl
equation in time-domain for general dispersive media that can be
applied to FDTD calculation in CPML region. The FDTD update
formulations in computational region can be obtained by considering
it as a special case of CPML region and letting κw = 1, σw = 0. On
the other hand, it can be seen from (16) and (17) that the convolution
of spatial derivative of E, H with ζw(t), and E with χ (t) must be
effectively solved in order to obtain the stretched-coordinate FDTD
update formulations for general dispersive media.

4. SARC FDTD UPDATE FORMULATION FOR
GENERAL DISPERSIVE MEDIA

Next, the FDTD update formulations corresponding (16) and (17) are
derived based on the semi-analytical recursive convolution (SARC)
algorithm in Digital Signal Processing (DSP) technique.

4.1. SARC Algorithm

Based on knowledge of DSP technique, for a linear, time-invariant and
causal system, suppose the impulse response can be written as

h (t) =
Q∑

q=1

Hqe
−αqtu (t) (19)

The system response for arbitrary input signal x (t) can then written
as

y (t) = h (t) ∗ x (t) =
∫ t

0
h (t− τ)x (τ) dτ (20)

Substituting (19) into (20), and introducing discrete time steps t =
n∆t, yn = y (n∆t), xn = x (n∆t), the system response can be written
in the discretized form as follows

yn =
Q∑

q=1

yn
q (21)

where

yn
q =

∫ n∆t

0
Hqe

−αq(n∆t−τ)x (τ) dτ (22)
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Decomposing the integral over the time interval [0, n∆t] into integral
over [0, (n− 1)∆t] and [(n− 1)∆t, n∆t], we can obtain

yn
q =

∫ (n−1)∆t

0
Hqe

−αq(n∆t−τ)x (τ) dτ +
∫ n∆t

(n−1)∆t
Hqe

−αq(n∆t−τ)x (τ) dτ

= e−αq∆tyn−1
q + In

q (23)
where

In
q = Hq

∫ n∆t

(n−1)∆t
e−αq(n∆t−τ)x (τ) dτ (24)

Replacing the input signal x (τ) over the time interval τ ∈
((n− 1)∆t, n∆t) with an interpolation polynomial, namely

x (τ) =
R∑

r=0

Arτ
r (25)

And substituting (25) into (24), then the integral In
q can be analytically

calculated as follows

In
q =

R∑

r=0

Cr,q xn−r (26)

where R stands for the order of approximation, xn−r is the (n − r)th
sample value of input signal, Ar and Cr,q is related to the applied
interpolation scheme. For example, we replace x (τ) over the time
interval τ ∈ [(n− 1)∆t, n∆t] with the Newton polynomial as follows:

x (τ) = xne +
xn − xn−1

∆t
(τ − (n− 1)∆t) + · · · (27)

where xne = xn−1. However, in practices, it may also take xn, or(
xn + xn−1

)/
2.

If we take the zero order approximation for (27), namely R = 0,
then

x (τ) ≈ xne (28)

Substituting it into (24), we obtain
In
q = c0,qxne (29)

where

c0,q =
{

Hq∆t αq = 0
(Hq/αq)

(
1− e−αa∆t

)
αq 6= 0

(30)

If we take the first order approximation for (27), namely R = 1,
then

x (τ) ≈ xn−1 +
xn − xn−1

∆t
(τ − (n− 1)∆t) (31)
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Substituting it into (24), and transforming integral variable τ into
τ = τ + (n− 1)∆t, we obtain

In
q = c0,qx

n + c1,qx
n−1 (32)

where

c0,q =





(Hq∆t)/2 αq = 0
Hq

αq

(
1− (

1− e−αq∆t
)/

(αq∆t)
)

αq 6= 0
(33)

c1,q =





(Hq∆t)/2 αq = 0
Hq

αq

((
1− e−αq∆t

)/
(αq∆t)− e−αq∆t

)
αq 6= 0

(34)

In practice, the approximation degree of In
q is dependent on the

applied different interpolation schemes and order of approximation.
However, the discrete system response in time-domain yn as (19)
always can be solved with semi-analytical recursive form no matter
what kind of interpolation scheme is applied.

4.2. SARC FDTD Update Formulations for General
Dispersive Media

As mentioned earlier, the electric susceptibility function χ in time-
domain can always be expressed in the form of (6) for the typical
dispersive model including Debye, Drude, Lorentz and etc. It can be
seen that the form of χ (t) and ζw (t) in (6) are similar to (19) which is
the impulse response of the linear, time-invariant and causal system.
Therefore the convolution in (16) and (17) can be solved by SARC
algorithm. For generality, the SARC FDTD update formulations in
CPML region are considered.

Let ψn
w,v = ζw (t) ∗ ∂

∂wFv (t)
∣∣
t=n∆t

(F = H or E; w, v =
y or z, and w 6= v). Replacing Fv (τ) over the time interval τ ∈
[n∆t, (n + 1) ∆t] with the zero order Newton polynomial, we obtain

∂

∂w
Fv (τ) =

∂

∂w
Fn

v (35)

Making use of (18), we have α1 = σω
ε0κω

+ αω
ε0

, H1 = σω
ε0κ2

ω
in ζw (t).

Substituting (23) and (29) into(35), we obtain

ψn+1
w,v = e

−
(

σw
ε0κw

+αw
ε0

)
∆t

ψn
w,v + cw

∂

∂w
Fn+1

v (36)

where

cw =
σw

σwκw + κ2
wαw

[
1− e

−
(

σw
ε0κw

+αw
ε0

)
∆t

]
(37)
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which is the same as CPML formulation given in reference [11].
However, it can be directly obtained by providing only pole and its
corresponding residue, because the SARC formulations have a unified
form.

Furthermore, let ~P = χ (t)∗E (t) and replace Ex (τ) over the time
interval τ ∈ [n∆t, (n + 1) ∆t] with the first order Newton interpolation
as (31),

Ex (τ) = En
x +

En+1
x −En

x

∆t
(τ − n∆t) (38)

Making use of (23) and (32), we obtain

Pn+1
x =

Q∑

q=1

Im
[
e−γq∆tPn

x,q + c0,qE
n+1
x + c1,qE

n
x

]
(39)

where c0,q and c1,q can be calculated by (33) and (34).
Finally, substituting (36) and (39) into (16), and taking the

average approximation to E
n+1/2
x =

(
En+1

x + En
x

)/
2, we obtain

En+1
x = CA · ~En

x + CB ·
[

1
κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ ψn

Ex,z
− ψn

Ex,y

]
∆t

+CB · Im
Q∑

q=1

[
ε0

(
1− e−γq∆t

)
Pn

x,q

]
(40)

where

CA =

ε0

(
ε∞ − Im

Q∑
q=1

c1,q

)
− σ∆t

2

ε0

(
ε∞ + Im

Q∑
q=1

c0,q

)
+

σ∆t

2

(41)

CB =
1

ε0

(
ε∞ + Im

Q∑
q=1

c0,q

)
+

σ∆t

2

(42)

ψn
Ex,z

and ψn
Ex,y

is given in (36) when F = H, w = z and y, respectively.
Substituting (36) into (17) and taking the average approximation to
Hn

x =
(
H

n+1/2
x + H

n−1/2
x

)/
2, we obtain

Hn+1/2
x = DA ·Hn−1/2

x

−DB ·
[

1
κy

∂Ez

∂y
− 1

κz

∂Ey

∂z
+ ψn

Hx,z
− ψn

Hx,y

]
(43)
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where

DA =
[
1− σm∆t

2µ

]/[
1 +

σm∆t

2µ

]
(44)

DB =
[
σm∆t

2µ

]/[
1 +

σm∆t

2µ

]
(45)

where ψn
Hx,z

and ψn
Hx,y

denote the expression of (36) when F = E,
w = z and y, respectively. In this way, the stretched-coordinate SARC
FDTD update formulations for general dispersive media are consisted
of (40), (39), (43), and (36), which suits for CPML region. It can be
degenerated to FDTD computation region when ψn

w,v = 0.
It is seen from the SARC FDTD update formulations that it are

related only to temporal discrete step ∆t, poles γq and corresponding
residues Gq of susceptibility function χ (t). The update formulations
always have unified form and FDTD computation can be performed
providing the poles and corresponding residues in dispersive medium
model of interest are given no matter what kind of dispersive medium
model is used. The calculation of integral χm, ζm, ∆χm and ∆ζm

in RC or PLRC approach are no longer necessary. The SARC
FDTD algorithms require only Q and 2Q additional real variables per
electric field components and 2Q and 5Q extra real multiplications,
respectively, for Q-order Debye and Lorentz media. It is equivalent
to PLRC in terms of memory and CPU time. One more advantage
is that the FDTD update formulations for CPML will be applicable
to truncation of any kind of dispersive medium, because the update
formulation for dispersive medium has been described by a unified
form.

On the other hand, it can be seen by substituting (29) and
(32) into (23) that the SARC FDTD formulations may come back
to the Recursive Convolution (RC) FDTD, or Trapezoidal Recursive
Convolution (TRC) and Piecewise Linear Recursive Convolution
(PLRC), if we take the zero order approximation and xne = xn,
xne =

(
xn + xn−1

)/
2, or the first order approximation, respectively. In

practical usage, SARC FDTD may also use other type of interpolation
scheme and high order approximation to improve the accuracy.

5. NUMERICAL RESULTS

To validate the proposed algorithm, examples involving three typical
kinds of dispersive model, i.e., Debye, Drude and Lorentz are taken
into consideration [18–21].

At first example, we consider the performance of CPML absorbing
boundary truncating dispersive medium. The FDTD computation
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region is shown in Fig. 1. The spatial cell size and temporal step are
δ = 5 cm and ∆t = δ/2c, respectively. The entire computational region
is divided into 40×40×40 cells, where the thickness of CPML absorbing
boundary are 8 cells. The electric dipole is centered in computational
region and surrounded by dispersive medium besides 64 cells near the
dipole that are in free space. The modulated Gauss pulse used in
calculation can be expressed as

Pi(t) = −10−10 cos(ωt) exp
[
−4π(t− t0)2

τ2

]
(46)

electric dipole

dispersive medium

CPML

Q point

Figure 1. Diagram of absorbing boundary for performance test.
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Figure 2. Real and imaginary part of the relative complex
permittivity verse frequency for three typical kinds of dispersive
medium.
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where t0 is the time when the peak value of envelop of Gauss pulse
emerge, τ is the pulse width, ω = 2π×0.3×109 rad/s, t0 = 9π/2ω, τ =
80∆t. The dispersive medium chosen in test include Debye, Lorentz
and Drude, respectively, where the parameters of Debye medium are:
ε∞ = 7, ∆ε1 = 3, τ1 = 7.0 × 10−10 s; the parameters of Lorentz
medium are: ε∞ = 1.5, ∆ε1 = 1.5, ωp = 40π GHz, δp = 4π GHz;
the parameters of Drude are ε∞ = 1, fp = 2.87 GHz, ωp = 2πfp,
vc = 200 GHz. Fig. 2 shows the relative permittivity of three dispersive
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Figure 3. Time-domain waveform at point Q when computational
region is filled with three typical kinds of dispersive medium, i.e.,
Debye (a), Lorentz (b) and Drude (c) medium.

medium changes with the frequency. The solid line in Figs. 3(a), 3(b)
and 3(c) denotes the time-domain waveform at observation point Q
when the computational region is filled with Debye, Lorentz and Drude
medium, respectively. For comparison, the calculation results that the
FDTD computational region is expanded so that the electromagnetic
wave pulse does not reach the absorbing boundary in view time are
also given in Fig. 3 (denoted as a reference solution). It can be seen
from Fig. 3 that the excellent agreement is obtained.

Next, we consider the backscattering RCS of three typical kinds of
dispersive medium sphere, respectively. The foam is similar to a Debye
dielectric material with a nonzero conductivity σ = 2.95×10−4 s/m. It
can be obtained from (1) that the pole and residue of first order Debye
model is respectively

γ =
1
τ
− j0, G = 0.0 + j

εs − ε∞
τ

, (47)

where the parameters for this material are εs = 1.16, ε∞ = 1.01, τ =
6.497× 10−10 s. The radius of dielectric sphere r = 3.75× 10−3 m, the
cell size δ = 0.005m. The backscattering RCS of the sphere calculated
by SARC FDTD is shown in Fig. 4. And the Mie’s solution [22] is
also given for comparison. Fig. 4 shows excellent agreement between
the SARC FDTD calculation and the exact Mie series solution.
Nonmagnetic plasma is a typical Drude model dispersive medium and
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Figure 4. Backscattering RCS of a foam sphere.

its frequency domain susceptibility function is expressed in the form
of (3). It can be seen that poles and the corresponding residues are

γ1 = 0 + j0, γ2 = vc + j0; G1 = 0.0− j
ω2

p

vc
, G2 = 0.0 + j

ω2
p

vc
, (48)

where the parameters are ωp = 2π × 28.7 × 109 Hz and vc = 2.0 ×
1010 s−1. The radius of the plasma sphere is r = 3.75 × 10−3 m, the
cell size δ = 5.0 × 10−5 m. Fig. 5 compares the backscattering RCS
calculated using SARC FDTD and the exact Mie series solution. It
can be seen that the SARC FDTD result agrees with the exact Mie
series solution.

The first order Lorentz model in frequency is in the form of (2)
and its poles and the corresponding residues are

γq = δq − j
√

ω2
q − δ2

q , Gq =
∆εqω

2
q√

ω2
q − δ2

q

− j0.0, (49)

where the parameters are εs = 2.25, ε∞ = 1.0, δq = 0.28 × 1016 s−1,
ωq = 4.0 × 1016 Hz. The radius of the Lorentz sphere is r =
15.0 × 10−9 m and the cell size δ = 3.0 × 10−10 m. Fig. 6 shows the
backscattering RCS calculated using the SARC FDTD and the exact
Mie series solution.
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Figure 5. Backscattering RCS of non-magnetized plasma.

0.0 5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

3.0x10
7

3.5x10
7

4.0x10
7

-220

-210

-200

-190

-180

-170

-160

-150

R
C

S
/d

B
s
m

Frequency/GHz

Figure 6. Backscatter RCS of a Lorentz sphere.

6. CONCLUSION

The SARC is a fast recursive convolution algorithm widely used
in DSP technique based on the linear interpolation theory to the
input signal and has some advantages in computation complexity,
stability and accuracy over the other recursive convolution schemes,
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such as RC/PLRC. In this paper, combining with the SARC
algorithm, the stretched-coordinate SARC FDTD formulations for the
general dispersive medium are obtained from the stretched-coordinate
Maxwell’s curl equations. The SARC FDTD update formulations
are unified in the computational region and CPML region for the
different dispersive medium model. Finally, to validate the \SARC
FDTD algorithm, the radiation of dipole when the computational
region is filled with dispersive medium and backscattering RCS of three
typical kinds of dispersive medium sphere is calculated, respectively.
In practice, since the FDTD method suit analysis of the complexity
object, the SARC FDTD presented in this paper also suits the analysis
of complex object including magnetic dispersion medium, anisotropic
dispersive medium and etc.
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