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Abstract—An electromagnetic inversion method is proposed for the
reconstruction of lossy dielectric slabs. The inversion is done using
particle swarm optimization hybridized with Quasi-Newton algorithm.
The inversion process is applied to reconstruct dielectric slabs with
discrete or continuous profiles. Accurate reconstruction of lossy
dielectric slabs is obtained from inversion of reflection coefficient data
of normally incident plane waves in the specified frequency range.
The proposed algorithm is also tested using noisy data and showed
satisfactory performance.

1. INTRODUCTION

Electromagnetic inversion is the problem of reconstructing the
electromagnetic properties of a medium (e.g., electric permittivity,
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permeability, conductivity. . . etc) using the data scattered from this
medium. This data may be considered as reflection coefficients,
input impedance, scattered electric or magnetic fields. The general
methodologies of the electromagnetic inversion problems can be
classified into direct based inversion methods and model based
inversion methods. The term direct based inversion means that
the electromagnetic properties of the medium are obtained from
direct calculations applied to the scattered data. These methods
include analytical approximation techniques [1–3] and layer stripping
techniques [4, 5]. Model based methods try to match the data
calculated from the forward problem with the data obtained from the
measurements or simulation process. The medium parameters that
support this match are composing the solution of the inverse problem.
This is usually done through the utilization of an optimization method
that minimizes the error between the observed and calculated data.
While direct based methods include faster techniques, model based
methods have superior performance when the data is incomplete or
contaminated with noise [6]. Model Based methods can be classified
to local and global optimization methods. Local Optimization
methods such as quasi-Newton and Gauss-Newton techniques [7–
9] are relatively fast but have the possibility of being trapped in
local minima due to the non-linear nature of the problem. For
this reason, these techniques are recommended only when sufficient
priori information about the inverted model is available. On the
other hand, global optimization techniques do not require priori
information about the model, for this reason convergence is reached
after relatively large number of iterations. The most recent global
techniques which are used in electromagnetic inversion problems
are the genetic algorithms (GA) [10, 11] and the particle swarm
optimization techniques (PSO) [12–15]. The swarm technique has
proven to outperform GA due to many reasons. Actually, through
a good selection of the swarm parameters, the rate of convergence can
be controlled [16, 17]. Also, it is simpler than GA and much easier
to be adjusted to obtain faster convergence [18, 19]. Recently, some
researchers use hybrid techniques of different methods to utilize their
advantages [15, 20, 21]. In this paper, an electromagnetic inversion
method is proposed for the reconstruction of a lossy dielectric slab
without any priori information. The slab may be formed of discrete
layers or continuous profile. The proposed method consists of a hybrid
of PSO and the quasi-Newton method. The PSO is first applied to
obtain proper priori information about the model which is then used
by the quasi-Newton algorithm to achieve faster convergence.
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2. FORMULATION OF THE PROBLEM

Electromagnetic inversion using optimization techniques is achieved
by solving out for the profile which minimizes the error between the
observed data and the synthetic one which is obtained by solving the
forward problem. The forward problem is introduced first.

Consider a dielectric slab which is embedded in the air and formed
of an M discrete homogeneous layers as shown in Fig. 1. The mth layer
of the slab is characterized by its relative permittivity εrm , electric
conductivity σm and height hm. All layers of the slab have magnetic
permeability µ0. Let an incident TEM polarized wave fall on the left
surface of the slab with time dependence ejωt. The reflection coefficient
in the air at the surface of the slab is defined as Γ = (Er/Ei)|slab surface

and is expressed as

Γ =
Zin(1)− Zc(0)
Zin(1) + Zc(0)

(1)

where Zin(1) represents the input surface impedance at the left surface
of the first layer of the slab and is obtained according to the recurrence
relation

Zin(m) = Zc(m)
Zin(m + 1) + Zc(m) tanh (γmhm)
Zc(m) + Zin(m + 1) tanh (γmhm)

(2)

where m is an integer with 1 ≤ m ≤ M, and

Zc(m) =
ηo√
ε′rm

ε′rm = εrm +
σm

jωεo

γm =
√

jωµo (σm + jωεoεrm) ηo =
√

µo

εo
= 120π Ω

Zin(M + 1) = Zc(M + 1) and Zc(M + 1) = Zc(0) = ηo
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Figure 1. Illustration of the multilayer discrete dielectric slab.
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It is worth noting that the above formulation can be used to
calculate the reflection coefficient due to continuous dielectric profiles
by dividing the profile to M homogeneous layers provided that M is
sufficiently large to include all the dielectric profile variations.

Let r1, r2, . . . , rN be the reflection coefficient data at different
frequencies within a specified frequency range, and Γ1, Γ2, . . . ,ΓN

be the synthetic reflection coefficient data calculated by solving the
forward problem as explained above. The error function to be
minimized is empirically proposed as

f( ~X)=
fmax∑

fi=fmin

[
1− fi−fmin

fmax

]∣∣∣Γi( ~X)−ri

∣∣∣
2

+3
fmin+

fmax−fmin
5∑

fi=fmin

∣∣∣Γi( ~X)−ri

∣∣∣
2

(3)
where fmin = 30MHz, fmax = 300MHz and ~X is a hyper-dimensional
vector whose components represent the unknown profile parameters of
the dielectric slab. It is worth noting that the error function given in
Eq. (3) is better in the search process than the commonly used error
formula given by

f( ~X) =
fmax∑

fi=fmin

∣∣∣Γi( ~X)− ri

∣∣∣
2

(4)

The modified error function of Eq. (3) has the advantage of
relatively enhancing the contribution of low frequency samples. This
weighting is useful to enhance the contribution of the conductivity
terms in the expression of Γ in Eq. (1). This helps in increasing the
accuracy of reconstructing the conductivity of the slab if compared
with that of classical error function of Eq. (4).

The value of ~X which minimizes the error function is supposed
to reconstruct a dielectric slab profile close to the original slab profile.
In reconstructing the lossy dielectric slab, it is recommended to use
the piecewise homogeneous model for discrete layers and any suitable
expansion function for the continuous profile models. Expansion
functions such as the cosine, sinc and legendre forms can be used.
However, it is recommended to use the model which can perform
the profile reconstruction with minimum number of terms. Through
the inversion process, it is found that the cosine expansion model
has the best performance for the proposed slab profiles over other
expansion functions. The piecewise and the cosine model parameters
are explained below.
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2.1. Piecewise Homogeneous Model

In this model, it is assumed that the slab can be divided into M

piecewise homogeneous regions, and the 3M -dimensional vector ~X
contains the relative permittivity, electric conductivity and length of
each layer. Thus, ~X = (εr1, σ1, h1, εr2, σ2, h2, . . . , εrM , σM , hM ) where
εr1, εr2, . . . , εrM are the relative permittivities of the different layers,
σ1, σ2, . . . , σM are their electric conductivities and h1, h2, . . . , hM

are the layers lengths.

2.2. Cosine Expansion Model

In this model, we use some terms of the Fourier cosine series of the
permittivity and conductivity profiles [22], which is given by

εr(z) = ao +
M∑

m=1

am cos
(mπz

L

)
, 0 ≤ z ≤ L (5a)

σ(z) = bo +
M∑

m=1

bm cos
(mπz

L

)
, 0 ≤ z ≤ L (5b)

In this case, the model parameters can be defined by the vector ~X

which is expressed as ~X = (ao, a1, a2, . . . , aM , bo, b1, b2, . . . , bM ). In
either case, the target of the optimization inversion algorithm is to find
the most suitable vector ~X which corresponds to the global minimum
of the error function given in Eq. (3).

3. PARTICLE SWARM OPTIMIZATION

The particle swarm optimizer (PSO) is a population based stochastic
optimization algorithm modeled after the simulation of social behavior
of bird flocks [23]. In the PSO system, a swarm of particles fly
through a hyper-dimensional search space. Each particle represents
a candidate solution to the optimization problem. The position of
a particle is influenced by the best position visited by itself which
represents its own experience and the position of the best particle in its
neighborhood representing the experience of neighboring particles [16].
The performance of each particle is measured using a fitness function
that varies depending on the optimization problem. The position of
each particle is updated by a stochastic velocity which depends on the
distance of the particle from its own best and from that of the swarm
best. The velocity and position update equations are given at any time
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step t by [16]:

vij(t + 1) = wvij(t) + c1r1,j(t)(pbest ij(t)− xij(t))
+c2r2,j(t)(gbestj(t)− xij(t)) (6)

xij(t + 1) = xij(t) + vij(t + 1) (7)

with i = 1, . . . , s and j = 1, . . . , n where

• s is the number of particles in the swarm
• n is the number of dimensions of the problem, i.e., the number of

parameters of the function to be optimized
• c1 and c2 are acceleration coefficients
• w is inertia weight factor
• r1(t), r2(t) ∼ U(0, 1)
• xi(t) is the position vector of particle i, at time step t

• vi(t) is the velocity vector of particle i, at time step t

• pbest i(t) is the best solution found by particle i, until time step t,
• gbest(t) is the best solution found by all the swarm at time step t,

The global and personal bests are updated using the following
equation in case of a minimization problem

pbest i(t + 1) =
{

xi (t + 1) , if f (xi (t + 1)) < pbest i (t)
pbest i (t) , if f (xi (t + 1)) ≥ pbest i (t)

(8)

gbest(t + 1) = pbest i (t + 1)
where f (pbest i (t + 1)) = min

j
f

(
pbestj (t + 1)

)
(9)

The first term of the velocity update in Eq. (6) represents the
inertia of the particle. This term serves as a memory of previous
velocities. The inertia weight controls the impact of the previous
velocity: a large inertia weight favors exploration, while a small inertia
weight favors exploitation [24]. The second term known as the cognitive
component represents the tendency of the individual particle to return
to the places of their best performance, and the third term known as
the social term represents the tendency of individuals to follow the
success of others [16].

The stochastic behavior of the second and third terms makes each
individual fluctuates between the region of its personal best and that of
the global best, thus makes some search for better solutions around the
global best and also searching in its area of personal best because the
global minimum might not turn out to be in the valley of the global
best, so by making each individual search in its personal best area,
there is a better chance that one of them discovers a deeper valley.
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The convergence of swarm is either detected from the velocity of
particles being so small in magnitude or from the distances between
particles being small enough. The algorithm can also be terminated
if convergence occurred for a percentage of the swarm. There should
be a lot of care taken when selecting the parameters w, c1 and c2

as the performance of PSO is sensitive to changes in values of these
parameters.

4. THE INVERSION ALGORITHM

The inversion algorithm is started at n = 1 and then n is increased
gradually until the fitness is achieved with the permissible error limits.
Each time n is increased, one of the individuals of the new generation of
the higher dimension space is obtained from the best individual found.
Also, one extra individual representing the average locations of other
individuals is added to the new generation. These two modifications
enhance the convergence time with a negligible additional cost. The
latter is called Center PSO [25]. To decrease the computation time at
any prescribed n, the output of the PSO is switched to the Quasi-
Newton local optimizer when expecting the trapping in the global
minimum valley. The process of switching between global and local
optimizers for each n is continued until final solution is obtained.

5. RECONSTRUCTION OF LOSSY DIELECTRIC SLABS

The proposed inversion algorithm is applied to three different models
for a lossy dielectric slab embedded in the free space. The first
dielectric slab model represents discrete dielectric variations with
εrn = (4, 7, 5), σn = (7, 2, 5)mS/m and hn = (20, 60, 40) cm. The
second dielectric slab model is continuous with a tanh distribution in
the form

εr = 6 + 4 tanh
(

z − 60
10

)
(10a)

σ = 5− 2 tanh
(

z − 60
10

)
(10b)

and the third model is also continuous with a Gaussian distribution in
the form

εr = 4 + 5e−
1
2( z−60

12 )2

(11a)

σ = 3− 2e−
1
2( z−60

12 )2

(11b)
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where z is in cm and σ is in mS/m. The swarm parameters used
in the reconstruction algorithm are given as c1 = 0.172, c2 = 0.172
and w = 0.985 for continuous slabs and c1 = 0.011, c2 = 0.011 and
w = 0.999 for discrete slabs with a population size of 5n where n is
the number of model parameters to be reconstructed.

The reconstructed profiles are shown in Figs. 2, 3 and 4
respectively. From these figures, it is shown that the accuracy of
the inversion is quite satisfactory in the three models. However, it
is clear that the accuracy of inversion of discrete model is better
than that of the other continuous models. It is also observed that
the inverted conductivity profiles of the continuous models contain
slight fluctuations around the original profiles. As shown in Fig. 4, the
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Figure 2. Reconstruction of permittivity and conductivity of discrete
profile using piecewise homogenous model.
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Figure 3. Reconstruction of permittivity and conductivity of tanh
profile using cosine expansion model.
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Figure 4. Reconstruction of permittivity and conductivity of gaussian
profile using cosine expansion model and different error functions.
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Figure 5. Value of fitness function vs. number of fitness evaluations
in inversion of Gaussian slab using both hybrid algorithm and standard
PSO.

reconstruction of the Gaussian profile using the proposed error function
is much better than that of the conventional one.

The convergence status of the reconstruction process using the
hybrid PSO algorithm is displayed together with that of the standard
PSO one in Fig. 5 when reconstructing the gaussian slab. It is evident
from this figure that the hybridization has much better effect on the
speed of convergence.



102 Emad, Hashish, and Hassan

0 20 40 60 80 100 120
0

2

4

6

8

10

z (cm)

re
la

ti
v
e

 p
e
rm

it
ti

v
it
y

original profile

reconstruction with 1% noise

reconstruction with 3% noise

0 20 40 60 80 100 120

0

2

4

6

8

10

z (cm)

c
o
n
d
u
c
ti
v
it
y

 (
m

S
/m

)

original profile

reconstruction with 1% noise

reconstruction with 3% noise

Figure 6. Inversion of discrete slab using noisy data for different noise
levels.
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Figure 7. Inversion of the gaussian slab using noisy data for different
noise levels.

6. EFFECT OF NOISE CONTAMINATION IN DATA

One of the major advantages of model based inversion methods is
that its performance is superior to other inversion algorithms when
the reconstruction data is contaminated with noise. This is because
minimizing the error of Eq. (3) is acting as if we are making a curve
fitting to find the model parameters that makes a reflection coefficient
curve moving in between the noisy reflection coefficient data, and thus
smoothing it and reducing the effect of noise. It is important to note
that inversion of noisy data is enhanced by increasing the resolution of
the data to obtain a more accurate average smoothing curve. Figs. 6
and 7 represent sample of results of applying the inversion algorithm
to noisy data with 1% and 3% relative noise power level in the discrete
and gaussian slabs.
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From these two figures, one concludes that the discrete model is
much more robust against noise than the continuous model. It is also
observed that the conductivity profile is more sensitive to noise than
the permittivity profile. This is expected since the loss tangent of these
models is much smaller than unity in the specified frequency band. It
is worth noting that the cases of large loss tangents values may lead
to weak inversion of the deep regions in the slab due to large losses.

7. CONCLUSION

An inversion algorithm for the reconstruction of dielectric slab profiles
has been proposed using the PSO. Inversion examples are presented
for different lossy dielectric slab models. These models include both
discrete and continuous models. The reflection simulated data are
used in the VHF band for the specified slab dimensions. The proposed
algorithm has proved to be successful, accurate and robust. The use
of Quasi-Newon method together with the PSO is effective in saving
a lot of computation time during the inversion process. The accuracy
of inversion of the discrete models is relatively larger than that of
the continuous models. It is also observed that the inversion of the
permittivity profiles is more robust against noise from that of the
conductivity profiles. The performance of the proposed algorithm is
promising for the inversion of 2D and 3D models.
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