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Abstract—In this article, we demonstrate that in the case of a
positive group velocity left-handed nonlinear (LH-NL) transmission
line with series nonlinear capacitances, the spatial derivative of the
voltage distribution satisfies the nonlinear Schrödinger (NLS) equation.
Consequently, it will shown that a LH-NL transmission line with series
varactors can be used to generate both bright and dark solitons similar
to a composite right-left-handed (CRLH) transmission line periodically
loaded with shunt varactors. The paper also discusses the conditions
for generation of bright and dark solitons.

1. INTRODUCTION

Left-handed (LH) metamaterials with simultaneously negative perme-
ability and permittivity have attracted the attention of microwave and
RF engineers in recent years [1–6]. First, Veselago investigated elec-
tromagnetic properties of these materials theoretically in 1968 [7]. He
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predicted that LH metamaterials exhibit negative refractive index [7, 8]
that leads to reversal of Snell’s law, of the Doppler effect, and of the
Cherenkov radiation. At the microwave frequencies, a number of trans-
mission line with LH characteristics have been proposed so far [9–11].
Furthermore, because of their anomalous dispersion, the LH transmis-
sion lines can support soliton waves when they are properly loaded with
nonlinear components [12]. In [13], Caloz introduces a balanced CRLH
transmission line with shunt voltage-dependent capacitors and demon-
strates that both bright and dark solitons can propagate on the pro-
posed transmission line. A comparable realization to [13] can be found
in [14] where a reductive perturbation method [15] is used to analyze
soliton generation. Another implementation of a LH-NL transmission
line is introduced in [16]. There, a pump signal is applied to a LH-NL
transmission line excites both bright and dark solitons. The reader is
referred to [17] which summarizes most of the recent research on the
LH-NL transmission line. In [18], the soliton propagation on LH anhar-
monic chains with negative group velocity is investigated by the quasi-
continuum approach, where it is shown that small-amplitude solitons
can propagate for any value of wave number in the first Brillouin zone.

In this paper, we proposed a LH-NL transmission line periodically
loaded with series nonlinear capacitances and linear shunt inductances.
For the proposed transmission line, we will demonstrate generation
of both bright and dark solitons. In Section 2, the governing wave
equation for this LH-NL transmission line is obtained. In Section 3,
a reductive perturbation method is applied to the proposed LH-NL
transmission line and a closed-form solution is presented. Simulation
results for verification of the obtained solution are given in Section 4.
Finally, Section 5 discusses the generation of soliton based on the
results obtained in the previous sections.

2. FORMULATION OF A LH-NL TRANSMISSION LINE
WITH SERIES VARACTORS

A circuit model of a LH-NL transmission line with N identical cells is
given in Fig. 1. Each cell of the model under consideration is contains
a series varactor diodes and a linear shunt inductance. Here, Vn and
un = Vn−Vn+1 are the voltage of the nth node and the voltage across
the nth varactor, respectively. In this paper, we have neglected the
dissipation of the LH-NL transmission line. Also in [18], the case in
which the shunt inductors are nonlinear but the series capacitors are
linear is also studied, although the implementation of capacitors seem
to be more practical.

The LH-NL transmission line shows two effects simultaneously.
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Figure 1. The nth and (n+1)th unit cells of the circuit model under
consideration.

First, its dispersive characteristic is anomalous; that is the lower
frequency components of an excited pulse travel slower than its higher
frequency components [12, 13]. Second, because of the variation
of the series nonlinear capacitances by the amplitude of the wave
traveling along the transmission line, the self-phase modulation (SPM)
phenomenon is observed in this transmission line similar to a nonlinear
optical fiber [19–21]. Because of the two effects mentioned above for the
LH-NL transmission line, there is the possibility of supporting envelope
soliton waves [12]. In what follows, we concentrate on deriving the
governing equation of the circuit model for investigation of the soliton
generation.

Applying Kirchhoff’s current law (KCL) to the nth node and
taking the derivative with respect to time of both sides of equations,
we realize that the voltages of the adjacent nodes satisfy:

∂2Q(Vn−1 − Vn)
∂t2

− ∂2Q(Vn − Vn+1)
∂t2

=
1
L

Vn, (1)

where Q is the stored charge in the nonlinear capacitance. Next, if
the nonlinear capacitance characteristic is estimated by the second-
order approximation of the voltage across the capacitor (u), Q is
approximately given by:

Q(u) ≈ C0u
(
1 + αu + βu2

)
, (2)

where α and β are, respectively, the first- and the second-order
nonlinearity coefficients of the varactors. By substituting Eq. (2) into
Eq. (1) and introducing the spatial variable z, Eq. (1) leads to

C0
∂2

∂t2
{V (z −∆z, t)− 2 V (z, t) + V (z + ∆z, t)
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+α
[
(V (z −∆z, t)− V (z, t))2 − (V (z, t)− V (z + ∆z, t))2

]

+β
[
(V (z−∆z, t)−V (z, t))3−(V (z, t)−V (z+∆z, t))3

]}
=

1
L

V (z, t)(3)

Here, Vn(t) is replaced by V (z = n∆ z, t). Now, by making the
assumption that the unit cell size (∆ z) is very small compared to the
wavelength, the Taylor expansions of V (z−∆ z, t) and V (z+∆ z, t) up
to the third-order can be retained. Substituting the Taylor expansion
into Eq. (3) yields:

C0
∂2

∂t2

(
∆ z2 ∂2V (z)

∂z2
− α∆ z3 ∂

∂z

(
∂V (z)

∂z

)2

+ β∆z4 ∂

∂z

(
∂V (z)

∂z

)3
)
− 1

L
V (z) = 0. (4)

By introducing the normalized variables T and Z according to:

T =
t√
LC0

Z =
z

∆ z
. (5)

Eq. (4) can be transformed into:
∂4

∂T 2∂Z2

(
U − αU2 + βU3

)− U = 0, (6)

where
U =

∂V

∂Z
. (7)

3. ASYMPTOTIC BEHAVIOR OF THE LH-NL
TRANSMISSION LINE

The reductive perturbation method is used for studying the asymptotic
behavior of nonlinear dispersive waves [15] and [22–24]. In this work,
under the assumption of weak nonlinearity, the reductive perturbation
method is applied to Eq. (6). To begin this procedure, the variables ξ
and τ are introduced as follows:

ξ = ε (Z − VgT )

τ = ε2T
. (8)

Note that ε is a small parameter and Vg denotes the group velocity
of the envelope wave. The derivatives with respect to the introduced
variables are given by:

∂

∂T
→ ∂

∂T
− εVg

∂

∂ξ
+ ε2 ∂

∂τ

∂

∂Z
→ ∂

∂Z
+ ε

∂

∂ξ

. (9)
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Now, the function U can be expanded to a power series of ε as follows:

U =
∞∑

n=1

εn
∞∑

`=−∞
Un

` (ξ, τ)ej`θ, (10)

where, θ = kZ−ω T and ` refers to a higher-harmonic wave component.
For U to be a real function, it is necessary to have U

(1)
` = U

(1)∗

−` .
The expression of U is substituted into the nonlinear Eq. (6) and the
coefficients of each order of ε are separated and set to zero. Therefore,
we obtain first-, second- and third-order sets of equations. The linear
dispersion relation for ` = ±1 of the first-order is given by:

ω2 =
1
k2

, (11)

where ω is normalized by 1/
√

LC0. Since the wave number is negative
in a LH transmission line, the group velocity is given by:

Vg =
∂ω

∂k
=

1
k2

. (12)

On the other hand, the third-order of ε for ` = 1 is obtained according
to the following equation:

j
∂U

(1)
1

∂τ
−

(
ω2 + 4λωk + V 2

g k2

2ωk2

)
∂2U

(1)
1

∂ξ2

+
1

2ωk2

(
−2

16(αk2ω2)2

16ω2k2 − 1
+ 3βk2ω2

) ∣∣∣U (1)
1

∣∣∣
2
U

(1)
1 = 0. (13)

By comparing Eq. (13) with the NLS equation, that is:

j
∂U

∂τ
+ P

∂2U

∂ξ2
+ Q |U |2 U = 0, (14)

we have realized that U
(1)
1 satisfies a NLS equation with the following

coefficients:

P =
1
2

∂2ω

∂k2
= ω3 Q =

ω

2

(
−32

15
α2 + 3 β

)
. (15)

It is observed from Eq. (15) that the sign of the dispersion coefficient
(P ) is always positive. But the sign of the nonlinearity coefficient (Q)
depends on the nonlinear characteristics of the capacitance. Therefore,
the sign of the product PQ can be positive or negative, which leads to
dark soliton (PQ < 0) or bright soliton (PQ > 0) generations. Thus,
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by supposing that the first power of ε is dominant, the dark soliton is
given by [25]:

U(z = n∆z, t)=A0

[
1−B2sech2

{∣∣∣∣
Q

8P

∣∣∣∣
1/2

BA0(n− Vg
t√
LC0

)

}]1/2

cos
(

kn− ωt√
LC0

− θ(z = n∆z, t)
)

, (16)

where A0 (the soliton amplitude) and θ(z = n∆z, t) are:

A0 = 2εA

θ(z = n∆z, t)

=
∣∣∣∣

Q

8P

∣∣∣∣
1/2

A0

√
1−B2

(
n− Vg

t√
LC0

)
+

Q

8
(3−B2)A2

0

t√
LC0

+ tan−1

{
B√

1−B2
tanh

(∣∣∣∣
Q

8P

∣∣∣∣
1/2

B A0 (n− Vg
t√
LC0

)

)}
(17)

B controls the depth of the dip soliton. The mathematical relation for
the bright soliton is presented in [24].

Note that if the dissipation of the LH-NL transmission line is
taken into account, P and Q coefficients obtained from the reductive
perturbation method will be complex numbers. Therefore, the formed
soliton is dissipated along the transmission line.

4. RESULTS AND SIMULATION

In order to verify our analytical prediction based on Eq. (16), we have
also analyzed the electric circuit of Fig. 1 using well-known methods
of circuit analysis. To this end, the circuit of Fig. 1 is connected to a
source with 50 Ohms resistance and a load with 50 Ohms resistance.
The number of cells between the source and the load are assumed to
be 500. The circuit is then analyzed using a timedomain technique
for nonlinear circuits. The method uses finite-difference applied to the
differential equations governing the voltages and current of the circuit.

4.1. Dark Soliton

Firstly, we consider the LH-NL transmission line with a linear shunt
inductance 2.5 nH and a varactor characterized by C(u) = 1 pF(1 +
3βu2), with β = −0.1. In this case, the sign of the product PQ is
negative. Therefore, if this circuit is excited by a dark initial signal [24],
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a dark soliton will be generated. A sample input pulse having narrow
dip is given by:

Vin = A0 tanh
(

t− τ0

T0

)
cos (2πft) , (18)

where A0 = 0.75, T0 = 1 ns, τ0 = 30ns and f = 2.7GHz.
The selected frequency is set in passband of the transmission line.
The envelope waveform obtained from the finite-difference method at
different positions z/L0 depicted in Fig. 2, where L0 is length of the
LH-NL transmission line.

As observed in Fig. 2, the invariant dark soliton with an amplitude
of A0 = 0.5 volts forms along the transmission line. Note that the dip
of the pulse retains its shape.

Figure 2. Dark soliton at different positions z/L0 obtained from
simulation of the LH-NL transmission line.

Figure 3. Comparison between the envelope waveform obtained from
the analytical solution and the simulation.
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Figure 3 compares the analytical solution of Eq. (16) and the
simulation result. As observed in Fig. 3, good agreement between
the analytical and simulated results. To verify that the dark soliton
is caused by the nonlinearity of the LH transmission line, we have
repeated the simulation with β = 0 which corresponds to linear
capacitors. Application of the waveform of Eq. (18) to this case results
in the propagation shown in Fig. 4. As expected, the width of the dip
broadens along the transmission line because of the LH transmission
line dispersive characteristic, so no soliton waves will be observed.

Figure 4. Tangent hyperbolic excitation at different positions z/L0

obtained from simulation of the LH transmission line.

Figure 5. A secant hyperbolic excitation at different positions z/L0

obtained from simulation of the LH-NL transmission line.
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According to the analytical calculations, this circuit because of its
negative nonlinearity cannot support bright solutions. To verify this,
the circuit is excited by a secant hyperbolic (i.e., a bright soliton) given
by:

Vin = A0 sech
(

t− τ0

T0

)
cos(2πft), (19)

where A0 = 0.75, T0 = 1 ns, τ0 = 10 ns and f = 2.7GHz. Propagation
of this pulse along the transmission line is simulated and the obtained
results are illustrated in Fig. 5. As expected, the pulse broadens while
propagating along the transmission line, so soliton waves are not
generated.

4.2. Bright Soliton

Now, we assume a nonlinear characteristic for the varactor as C(u) =
1 pF(1+3βu2), with β = 0.1. In this case, the circuit is excited by the
pulse given by Eq. (19). Because of the positive sign of the product
PQ, as predicted by the analytical solution, a bright soliton with an
amplitude of A0 = 0.47 volts will be formed along the transmission line.
The envelope waveforms obtained from simulation are shown in Fig. 6.
As seen in this figure, the envelope waveform preserves its shape along
the propagation path. Fig. 7 compares the analytical solution and the
simulation results. From the results shown in Fig. 7, it is observed the
analytical solution is in good agreement with the simulation result. To
confirm that the bright soliton is formed due to the nonlinearity of the

Figure 6. Bright soliton at different positions z/L0 obtained from
simulation of the LH-NL transmission line.
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Figure 7. Comparison between the envelope waveform obtained by
the analytical solution and the simulation.

Figure 8. A secant hyperbolic excitation at different positions z/L0

obtained from simulation of the LH transmission line.

LH transmission line, the simulation of this circuit with β = 0 and
application of the waveform of Eq. (19) is carried out. Fig. 8 shows
the simulation results at different positions z/L0. As predicted, the
width of the pulse broadens along the transmission line.

5. CONCLUSION

In this paper, modeling of a LH-NL transmission line loaded
periodically with nonlinear series capacitors and linear shunt inductors
is presented. The reductive perturbation method is applied to
reformulate the obtained equation. It is shown that the spatial
derivative of the voltage across the transmission line satisfies a NLS
equation. The coefficients of the obtained NLS equation show that
the dispersion coefficient (P ) is always positive, but the sign of the
nonlinearity coefficient (Q) is determined by the characteristics of the
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varactor. Depending on the sign of the product PQ, the proposed
LH-NL transmission line can generate either bright or dark solitons.
We have verified generation of both kinds of solitons using a circuit
simulator based on a finite-difference method. A good agreement is
observed between the analytical prediction and the simulation results.
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