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Abstract—A novel general technique for treating electrically thin
dispersive layer with the finite difference time domain (FDTD) method
is introduced. The proposed model is based on the modifying of the
node update equations to account for the layer, where the electric
and magnetic flux densities are locally averaged in the FDTD grid.
Then, based on the characteristics that the complex permittivity and
permeability of three kinds of general dispersive medium models, i.e.,
Debye model, Lorentz model, Drude model, the permittivity and
permeability can be formulated by rational polynomial fraction in jω;
the conversion equation from frequency domain to time domain (i.e.,
jω replaced by ∂/∂t) and the shift operator method are then applied
to obtain the constitutive relation at modified electrical points, and
the time-domain recursive formulas for D and E, B and H available
for FDTD computation are obtained. Several numerical examples are
presented, indicating that this scheme possesses advantages such as fine
generalization, EMS memory and time step saving, and good precision.

Corresponding author: B. Wei (bwei@xidian.edu.cn).



244 Wei et al.

1. INTRODUCTION

Many microwave devices contain electrically thin layer, and anechoic
coatings used for shielding are also electrically small dispersive layer.
Therefore, the numerical simulation of such electromagnetic problems
is receiving much attention. The finite difference time-domain (FDTD)
method has been widely used in electromagnetic field numerical
algorithm [1–16] due to its excellent characteristics such as wide
applicability, ability to deal with non-uniform media and capability
to acquire wideband information with one time calculation combined
with Fourier transformation. The electromagnetic problem containing
thin layers can be solved basically in three ways: (1) To divide the
volume into small enough cells. Although this is a rigorous technique,
it is computationally extremely demanding, since very small cells are
needed inside electrically dense objects to resolve the spatial variations
of the electromagnetic fields. (2) Using the surface impedance
boundary conditions (SIBCs), this method is usually employed to solve
the problem concerning the perfect electric conductor (PEC) coating
problem, but the implementation gets extremely complicated in the
case of dispersive medium thin layer [3, 4]. (3) By locally modifying
the iterative equations at nodes of the cells where the thin layer is
located [5]. Considering the memory requirement and computational
complication, we prefer the third approach, i.e., local modification to
the iterative equations at the nodes of the cells in which the thin layer
is located.

In dealing with the time-domain wideband computation, the
problem of dispersive thin layers is much more complicated than
that of non-dispersive thin layers. Such publications have seldom
been seen in literature. In 2003 Mikko et al. [5] employed the node
modification algorithm to deal with thin layer problem. In Mikko’s
work, the effective parameters at the modified nodes are obtained
by weighed average method. In the mean time, some intermediate
variables and many other parameters such as polarization intensity,
current density, magnetization intensity and magnetic current density
are required in the calculation. The derivative process is troublesome
and complicated. In Mikko’s algorithm the electric dispersion property
of metal substrate thin dispersive layer is omitted, and only one-
dimensional case of Lorentz medium is accounted for. Giulio Antonini
et al. [6] utilized the surface impedance boundary conditions and
Green’s function method to treat the dispersive medium thin layer
problem in free space, and again only one-dimensional numerical
examples are given. As a whole, a disadvantage of the inhere
algorithms is needed to deduce different formulations for unlike
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dispersion model. In addition, only one-dimensional numerical
examples are given; numerical examples concerning three-dimensional
dispersive medium thin layer have not been seen.

In this paper, a general FDTD method modeling thin dispersive
medium layer is proposed on the basis of references [5] and [7].
When the thickness of the electrically small dispersive thin layer is
smaller than the dimension of the FDTD cell, the effective medium
parameters at the modified points in the cells where the thin layer is
located are found by utilizing weighted average to the electric flux
densities and magnetic flux densities in the cell. Then, based on
the characteristics of the complex permittivity and permeability of
three kinds of general dispersive medium models, i.e., Debye model,
Lorentz model, Drude model, the permittivity and permeability can
be formulated by rational polynomial fraction in jω; the conversion
equation from frequency domain to time domain (i.e., jω is replaced
by ∂/∂t); the shift operator method are then applied to obtain the
constitutive relation at modified electrical quantities; the time-domain
recursive formulations for D and E, B and H available for FDTD
computation are obtained. The proposed scheme can deal with both
electric and magnetic dispersive thin layer problems, making it easier
for compiling the general three-dimensional program to treat the
commonly-seen thin dispersive medium layer.

2. THE BASIC IDEAS OF NODE MODIFICATION
ALGORITHM

The FDTD calculation is generally carried out by Yee cell as illustrated
in Fig. 1(a). Bounded by the stability condition, it is impossible for
the grids to be discretized too finely. FDTD can hardly handle the
situation in which the thickness of the thin layer is smaller than the
dimension of space discrete grid (as shown in Fig. 1(b)). In node
modification algorithm, FDTD cell is categorized into two classes. One
is ordinary cell in which the parameters of the electric and magnetic
fields at the sampled points are set to the medium parameters of the
cell (as shown in Fig. 1(a)). The other is modified cell (as shown in
Fig. 1(b)) in which the effective medium parameters are required to
simulate the contributions of thin layer.

From the analysis above, we can see that calculation of the
effective medium parameters at nodes is one of the key problems in
node modification algorithm. For non-dispersive medium, it is ok to
substitute the effective parameters into the recursive formula directly.
However, the parameters of dispersive medium vary with frequency,
and the effective medium parameters also vary with frequency. Since
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(a) (b)

Figure 1. Yee Cell. (a) The ordinary case, (b) the case including thin
dispersive layer.

FDTD calculation is performed in time-domain, it is required to
obtain the time-domain recursive formula from the frequency-domain
constitutive relation at the modified points. In the following sections,
the way to acquire the effective medium parameters is introduced; the
way to get the corresponding time-domain constitutive relation from
frequency-domain constitutive relation is discussed; then the time-
domain recursive formulas used for FDTD calculation are obtained.

3. THE EFFECTIVE COMPLEX PERMITTIVITY AND
PERMEABILITY AT MODIFIED POINTS

In FDTD calculation, the modification of the nodes of electric
field is associated with the effective complex permittivity, while the
modification of the nodes of magnetic field is associated with the
effective complex permeability. The calculation methods of the
effective permittivity and permeability are given as follows:

(1) The thin dispersive layer in free space
If the thin dispersive layer is located in free space, and the

thickness of the thin layer is smaller than the dimension of FDTD
cell, the effective parameters at the modified points can be found by
averaging the electric flux densities and magnetic flux densities in the
cell. If the ratio of the volume of the thin layer inside the cell to that
of the cell is α, the total electric flux density and magnetic flux density
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can be represented by

~D = αε0εr(ω) ~E + (1− α)ε0
~E

~B = αµ0µr(ω) ~H + (1− α)µ0
~H

(1)

Eq. (1) can be written as

~D = ε0εr,ave
~E ~B = µ0µr,ave

~H (2)

where εr,ave, µr,ave are the effective relative permittivity and
permeability at the modified points, respectively.

εr,ave = α(εr − 1) + 1 µr,ave = α(µr − 1) + 1 (3)

(2) Thin dispersive layer on the substrate of the PEC
For thin dispersive medium layer on the substrate of the perfect

electric conductor, the effective parameters at the sampled points of the
magnetic fields can also be obtained by local average method. However,
the effects are not good enough if we use the same method to make
node modification for the sampled points of electric fields [5]. The
cross section chart in Fig. 1(b) perpendicular to PEC surface is shown
as Figs. 2(a) and 2(b). Figs. 2(a) and 2(b) represent two cases in
which the cell is incised along the edge and along the center of the
cell, respectively (the double arrows in the figure stand for the points
which need modification). The effective medium parameters at the
modified points of the electric fields can be divided into two cases: (a)
The effective medium parameters corresponding to the normal electric

(a) (b)

Figure 2. The modification of the tangential electric field strength
near conductor surface. (a) The boundary surface separating two
adjacent cells, (b) the central cross section of an Yee cell.
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field on the surface (the y component of the electric field in Fig. 2) can
still be obtained by the method mentioned in (1). (b) The effective
parameters corresponding to the tangential electric field on the surface
(the x and z components of the electric field in Fig. 2) can be obtained
by the following method.

Assume that the thickness of the thin dispersive medium layer
is d; spatial discrete size of the grid in y direction is ∆y; y = 0 is
the boundary surface separating the perfect electric conductor and
dispersive medium. Obviously, the tangential electric field strength at
y = 0 equals zero. We make an assumption that the tangential electric
field behaves linearly in the range of 0 < y < 2∆y near the surface
of the perfect electric conductor (x and z components of the electric
field strength are shown in Figs. 1 and 2). Taking x component for
example, we have

Ex (y) =
y

∆y
Ex|1 (4)

where Ex (y) refers to the x component of the electric field strength
near the perfect electric conductor. Ex|1 is the x component of the
electric field strength in the grid to the right of the surface of the
conductor. The way to choose the effective parameters in the ranges
of 0 < d ≤ ∆y/2 and ∆y/2 < d < ∆y is discussed as follows.

(1) If 0 < d ≤ ∆y/2, we can find the effective relative permittivity
at the modified points by averaging the electric flux densities in two
individual cells which are located on the left and right sides of the
modified points of the electric field strength near the surface of the
conductors.

Dx|1 =
1

2∆y

∫ 2∆y

0
ε (y)

y

∆y
Ex|1 dy

=
1

2∆y

∫ d

0
ε0εr

y

∆y
Ex|1 dy +

1
2∆y

∫ 2∆y

d
ε0

y

∆y
Ex|1 dy

= ε0εr,ave Ex|1 (5)

where the effective complex relative permittivity can be written as

εr,ave(d, εr) = 1 +
d2

4∆y2
(εr − 1) (6)

where εr is the relative permittivity of the dispersive medium.
(2) If ∆y/2 < d < ∆y, we can find the effective relative

permittivity at the modified points by averaging the electric flux
densities in two individual half cells which are located on the left and
right sides of the modified points of the electric field strength near the
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surface of the conductors.

Dx|1 =
1

∆y

∫ 3∆y
2

∆y
2

ε (z)
y

∆y
Ex|1 dy

=
1

∆y

∫ d

∆y
2

ε0εr
y

∆y
Ex|1 dy +

1
∆y

∫ 3∆y
2

y
ε0

y

∆y
Ex|1 dy

= ε0εr,ave(d, εr) Ex|1 (7)

where the effective complex permittivity can be written as

εr,ave(d, εr) =
9− εr

8
+

d2

2∆y2
(εr − 1) (8)

4. THE TIME-DOMAIN ITERATIVE FORMULATIONS
AT THE MODIFIED POINTS

The effective permittivity and permeability of the dispersive medium
are the function of frequency. In this case, the constitutive
relation becomes convolution form in time domain, making it difficult
to calculate the wave scattering and propagation in dispersive
medium by FDTD. Problems concerning dispersive media can be
solved by FDTD in several ways such as recursive convolution, Z
transformation, current density convolution and auxiliary differential
equation methods, etc. These methods lack generality since they are
usually applied to different models for different dispersive media to
obtain the corresponding recursive formulas. Next, we shall use FDTD
combined with shift operator (SO-FDTD) [7] to give the time-domain
recursive formulas for arbitrary dispersive medium models.

The formulas of the permittivity and permeability for three generic
classes of linear isotropic dispersive media are as follows [11]:

(1) Debye model

ε (ω) = ε∞ +
p∑

p=1

εs,p − ε∞,p

1 + jωτe,p
≡ ε∞ +

p∑

p=1

∆εp

1 + jωτe,p

µ (ω) = µ∞ +
p∑

p=1

µs,p − µ∞,p

1 + jωτm,p
≡ µ∞ +

p∑

p=1

∆µp

1 + jωτm,p

(9)

where ∆εp = εs,p − ε∞,p, ∆µp = µs,p − µ∞,p, εs,p and µs,p refer to the
relative permittivity and relative permeability at static state or zero
frequency, respectively. ε∞,p and µ∞,p are the relative permittivity
and relative permeability at infinitely large frequency, respectively;
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τe,p and τm,p represent electric pole relaxation time and magnetic pole
relaxation time, respectively.

(2) Lorentz model

ε (ω) = ε∞ +
p∑

p=1

∆εpω
2
e,p

ω2
e,p + 2jωδe,p − ω2

µ (ω) = µ∞ +
p∑

p=1

∆µpω
2
m,p

ω2
m,p + 2jωδm,p − ω2

(10)

where ∆εp and ∆µp means the same as above; ωe,p and ωµ,p are electric
pole frequency and magnetic pole frequency, respectively; δe,p and
δm,p are electric damping coefficient and magnetic damping coefficient,
respectively.

(3) Drude model

ε (ω) = ε∞ −
p∑

p=1

ω2
e,p

ω2
e,p − jωγe,p

µ (ω) = µ∞ −
p∑

p=1

ω2
m,p

ω2
m,p − jωγm,p

(11)

where ωe,p and ωµ,p are frequencies of electric Drude pole and magnetic
Drude pole, respectively; γe,p and γm,p are the reciprocal of the
relaxation time of electric pole and magnetic pole, respectively.

It can be proved that the relative permittivity εr (ω) and relative
permeability µr (ω) in the above-mentioned three kinds of dispersive
medium models can all be formulated by rational polynomial fraction
in jω [7]. Similarly, εr,ave (ω) and µr,ave (ω) in Eqs. (3), (6) and (8)
can also be formulated by rational polynomial fraction with respect to
jω. That is

εr,ave (ω) =

[
N∑

n=0

pne (jω)n

]/[
N∑

n=0

qne (jω)n

]

µr,ave (ω) =

[
N∑

n=0

pnm (jω)n

]/[
N∑

n=0

qnm (jω)n

] (12)

Here, the frequency-domain constitutive relations of dispersive medium
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can be expressed as

~D = ε0

(
N∑

n=0

pne (jω)n

/
N∑

n=0

qne (jω)n

)
~E

~B = µ0

(
N∑

n=0

pnm (jω)n

/
N∑

n=0

qnm (jω)n

)
~H

(13)

Using the conversion equation from frequency domain to time domain,
i.e., jω replaced by ∂/∂t, we can rewrite Eq. (13) as

[
N∑

n=0

qne (∂/∂t)n

]
~D = ε0

[
N∑

n=0

pne (∂/∂t)n

]
~E

[
N∑

n=0

qnm (∂/∂t)n

]
~B = µ0

[
N∑

n=0

pnm (∂/∂t)n

]
~H

(14)

Introducing the time-domain shift operator zt defined by

ztf
n = fn+1 (15)

We can see that the function of the shift operator is to shift the value
of the discrete time-domain array at time n to that at time n + 1. It
can be proved that [7] the shift operator of the partial derivative with
respect to time can be written as

(∂/∂t)n → {(2/∆t) [(zt − 1)/(zt + 1)]}n (16)

Substituting Eq. (16) into Eq. (14) and putting it in order, we have
the discrete time-domain constitutive relation (for simplicity, we set
h = 2∆t, where ∆t is the discrete time interval, and take x component
as example)
[

N∑

l=0

qleh
l (zt+1)N−l(zt−1)l

]
Dn

x =ε0

[
N∑

l=0

pleh
l(zt+1)N−l(zt−1)l

]
En

x

[
N∑

l=0

qlmhl (zt+1)N−l(zt−1)l

]
Bn

x =ε0

[
N∑

l=0

plmhl(zt+1)N−l(zt−1)l

]
Hn

x

(17)

Eq. (17) is the discrete time-domain constitutive relation containing
shifting operator at the modified points. Under ordinary conditions,
we let N be 1 or 2 in engineering applications. For example, in the
case of single pole Debye model, N = 1; in the cases of unmagnetized
plasma, double pole Debye model, single pole Lorentz model and single
pole Drude model, N = 2.
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If N = 2, then we have the recursive equations from D to E and
from B to H as follows:

En+1
x =

[
a0e

(
Dn+1

x /ε0

)
+ a1e (Dn

x/ε0) + a2e

(
Dn−1

x /ε0

)

−b1eE
n
x − b2eE

n−1
x

]
/b0e

Hn+1
x =

[
a0m

(
Bn+1

x /ε0

)
+ a1m (Bn

x/ε0) + a2m

(
Bn−1

x /ε0

)

−b1mHn
x − b2mHn−1

x

]
/b0m

(18)

where
a0e = q0e + q1eh + q2eh

2, a1e = 2q0e − 2q2eh
2,

a2e = q0e − q1eh + q2eh
2 b0e = p0e + p1eh + p2eh

2,

b1e = 2p0e − 2p2eh
2, b2e = p0e − p1eh + p2eh

2

a0m = q0m + q1mh + q2mh2, a1m = 2q0m − 2q2mh2,

a2m = q0m − q1mh + q2mh2 b0m = p0m + p1mh + p2mh2,

b1m = 2p0m − 2p2mh2, b2m = p0m − p1mh + p2mh2

(19)

For the general case of N ≥ 3, Eq. (17) can be written as

En+1
x =

1
b0e

[
N∑

l=0

ale

(
Dn+1−l

x

/
ε0

)
−

N∑

l=1

bleE
n+1−l
x

]

Hn+1
x =

1
b0m

[
N∑

l=0

alm

(
Bn+1−l

x

/
ε0

)
−

N∑

l=1

blmHn+1−l
x

] (20)

where ale, ble can be expressed by q0e, q1e, . . . qNe, p0e, p1e, . . . pNe, and
alm, blm can be represented by q0m, q1m, . . . qNm, p0m, p1m, . . . pNm.

Equations (18) and (20) are the recursive equations of the electric
and magnetic field strength at modified points as shown in Fig. 2.

5. NUMERICAL RESULTS

Example 1: The reflection coefficient of thin medium layer. The
thin medium layer whose electric and magnetic parameters are both
dispersive, parameters associated with permeability µ(ω) are chosen
as βm,1 = 4 · 1020 (rad/s)2, βm,2 = 1.25 · 1021 (rad/s)2, ω0m,1 =
5 · 1010 (rad/s), ω0m,2 = 10 · 1010(rad/s), γm,1 = γm,2 = 1, δm,1 =
5 · 109 (rad/s), δm,2 = 4 · 109 (rad/s) and µ∞ = 1; Those for the
permittivity ε(ω) are chosen as ε∞ = 2, βe,1 = 9 · 1020 (rad/s)2,
ω0e,1 = 3 · 1010 (rad/s), γe,1 = 1 and δe,1 = 5 · 108 (rad/s). The size of
FDTD spatial grid is 0.5mm; the variation of the reflection coefficient
with the frequency is shown in Fig. 3. Figs. 3(a) and 3(b) show the
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cases that the thickness of the thin layer is equal to 0.4 mm and 0.2mm,
respectively. The circles in the figures correspond to the calculating
results from the scheme in this paper, while the solid lines represent
the analytical results. The calculating results are in good agreement
with the analytical one.

Example 2: The reflection coefficient of thin Lorentz medium layer
with metal substrate. The parameters of thin Lorentz medium layer
and the size of FDTD spatial grid are the same as that of the above
example. Figs. 4(a) and 4(b) represent the variation of the reflection
coefficients of metal-backed thin dispersive layer with frequency for
thickness of 0.4 mm and 0.2 mm, respectively. The circles in the figures

(a) (b)d=0.4 mm d=0.2 mm

Figure 3. Variation of reflection coefficients of thin Lorentz layer with
frequency.

(a) (b)d=0.4 mm d=0.2 mm

Figure 4. Reflection coefficients of metal-backed thin Lorentz medium
layer.
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correspond to the calculated results from the scheme in this paper,
while the solid lines represent the reflection coefficients calculated
from the method of impedance boundary condition. Close agreement
between these two types of results can be seen from the figures.

Example 3: The back scattering radar cross section (RCS) of
a square metal plate coated with thin Lorentz medium layer. The
side length and thickness of the metal plate are 100 mm and 5mm,
respectively. On one side of the plate is coated with thin dispersive
layer. The electromagnetic wave normally incident on the side of the
metal plate is coated with thin dispersive layer. The width of the
cubic grid in FDTD is δ = 5mm; parameters of coating medium are
βm = 4·1020 (rad/s)2, ωm = 2·1010 (rad/s), δm = 5·109 (rad/s), γm = 1,
µ∞ = 1, βe = 9 ·1020 (rad/s)2, ωe = 3 ·1010(rad/s), δe = 5 ·108 (rad/s),
γe,1 = 1 and ε∞ = 2. Fig. 5 depicts the results of the back scattering
RCS of the coated metal in different coating thicknesses. The circles
and triangles in Fig. 5 represent the calculating results from node
modification method when coating thicknesses are 2 mm and 4mm,
respectively. For comparison, the calculating results for smaller FDTD
grid, 1 mm in this example, are also given. In this case the thickness
of the thin layer is greater than the dimension of the cell, and the
results can be regarded as the precise ones. The solid and dashed
lines in Fig. 5 correspond to the calculated results when the FDTD
grid dimension is 1mm, and the thicknesses of the thin dispersive
layer are 2 mm and 4mm, respectively. Good agreement between these
two types of results can be seen from the figure. It should be noted
that the time required by modifying algorithm accounts for only 1/125
of that required by fine grid algorithm. The more is the number of
the spatially discretized grid, the more time is required to accomplish

1.5 2.0 2.5 3.0 3.5 4.0 4.5
-40

-30

-20

-10

0

R
C

S
/d

B
sm

Frequency (GHz)

Figure 5. The back scattering RCS of a square metal plate coated
with thin Lorentz medium layer.
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(a) (b)

Frequency (GHz)Frequency (GHz)

Figure 6. The back scattering RCS of thin dispersive plate of Debye
model.

the computation. Therefore, the memory and time step saving are
prominent using the modifying method in this paper.

Example 4: The back scattering RCS of thin dispersive plate
of Debye model. A thin square dispersive plate is located in free
space. The parameters of unmagnetized medium are: µr = 1.0 and
σm = 0, whose relative complex permittivity is the same as Eq. (9):
εs = 1.16, ε∞ = 1.01, σ = 2.95 × 10−4 S/m, t0 = 4.497 × 10−10 s.
The side length of the thin plate is 0.5m. The size of FDTD grid
is ∆x = ∆y = ∆z = 5 cm, and time step is equal to ∆t = ∆z/2c.
The electromagnetic wave is normally incident on the surface of the
plate and is received in backward direction. Figs. 6(a) and 6(b) show
the back scattering RCS of thin layer when the thicknesses are 4 cm
and 2 cm, respectively. The circles in the figure correspond to the
calculated results from the scheme in this paper, while the solid lines
represent the reflection coefficients calculated from fine grid method
(1 cm grid). Again, good agreement between these two cases can be
seen from the figure. The memory consumption and computational
time can be reduced by using modification method.

6. CONCLUSION

A local average method to the region where thin dispersive layer is
located, and node modification algorithm for thin dispersive layer
based on SO-FDTD are presented in this paper. Both the electric
and magnetic dispersion cases can be handled by this scheme,
realizing compiling one program to treat three types of commonly-met
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medium targets in electromagnetic problems. Numerical results have
demonstrated that the proposed scheme is of excellent computational
precision, good generality, obvious EMS memory and computational
time saving.
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