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Abstract—Tracking a target is a fundamental and crucial problem
in wireless sensor networks. It is well known that non-line-of-sight
(NLOS) propagation will significantly degrade the tracking accuracy if
its effects are ignored. In this paper, a line-of-sight (LOS) identification
approach for range-based tracking systems is developed to discard
the NLOS measurements. Based on Lp-norm LOS identification
strategy, a novel target tracking method is devised with the use of cost-
reference particle filter, which does not require the knowledge of the
measurement noise distribution. Computer simulations are included to
verify the effectiveness of the proposed approach under different noise
distributions.

1. INTRODUCTION

The research topic of wireless sensor network (WSN) has attracted
much attention over the past few years. WSNs have wide applications
in environmental, medical, food-safety and habitat monitoring,
assessing the health of machines, vehicles and civil engineering
structures, energy management, inventory control, home and building
automation, homeland security and military initiatives [1, 2]. An
important problem in WSNs is to track the position of a target.
Due to reflection and diffraction, non-line-of-sight (NLOS) error which
may occur in urban environments, will lead to unreliable tracking
results if its effects are not taken into account. Usually, the line-of-
sight (LOS) identification step is carried out, and then the identified
LOS measurements are used for target tracking. Assuming that
prior knowledge of NLOS-induced error and measurement noise is
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available, a NLOS mitigation algorithm is proposed in [3]. In [4], a
non-parametric probability density estimation technique is employed
to approximate the distribution of measurements based on complete
knowledge of measurement noise. A simple hypothesis test problem is
utilized to detect NLOS error in [5]. However, neither NLOS-induced
error nor measurement noise distribution is available in practice.

In this work, we tackle the target tracking problem in NLOS
environment using the particle filter (PF) approach. PF [6, 7] has
emerged as an important sequential state estimation method for
stochastic nonlinear and/or non-Gaussian state-space models, for
which it provides a powerful tool in signal processing and other
communities. However, one of the problems with PF is that the
noise distribution is needed for algorithm development. When there is
no prior information about the noise distributions, the PF cannot be
effectively utilized. A modification to PF is cost-reference particle filter
(CRPF) [8, 9]. It is also based on the principle of exploring the state-
space by drawing particles but it does not require noise distribution
information. As with all particle-based filters, choosing the importance
function is an important issue of CRPF in the implementation. The
most popular choice is transition prior because of its simplicity and this
corresponds to the so-called bootstrap filter. Since the transition prior
does not utilize the latest measurements to generate new particles,
this filter usually leads to unsatisfactory performance. On the other
hand, extended Kalman filter (EKF) [6] and unscented Kalman filter
(UKF) [10] generate new particles with the use of latest measurements
for performance enhancement. In this paper, we will tackle two major
issues that deteriorate the tracking performance in sensor networks,
namely, NLOS propagation and unknown measurement noise. First,
we propose to use Lp-norm as a criterion to identify LOS measurements
under unknown noise distributions. According to Lp-norm, the quality
of each measurement is calculated, which can be seen as a probability
of measurement being under LOS propagation, and then the identified
LOS measurements are selected. Second, using the identified LOS
measurements, target tracking is accomplished with use of CRPF,
in which we propose to use Lp-norm to calculate the particles’ cost
without measurement noise information. The main novelty of this
paper is that a LOS identification algorithm is developed based on Lp-
norm in target tracking under different noise distributions with use of
the CRPFs.

The rest of the paper is organized as follows. The problem
formulation of target tracking with NLOS propagation is presented
in Section 2. Three types of noise distributions used in this paper are
introduced in Section 3. A brief introduction of PF and CRPF is given



Progress In Electromagnetics Research, PIER 97, 2009 375

in Section 4. In Section 5, our LOS identification approach is proposed
to perform tracking using CRPFs. In Section 6, simulation results for
evaluating the tracking performance of the developed algorithms are
provided. Finally, conclusions are drawn in Section 7.

2. PROBLEM FORMULATION

The model-based methods for tracking applications generally require
two models: The state model, denoted by xt, describes the evolution
of the state with time, and the measurement model, denoted by zt,
defines the relationship between noisy observations and the state. In
case of two-dimensional (2D) target tracking, let xt = [xt, yt, ẋt, ẏt]T
be state vector that contains the coordinates and velocities of a moving
target at time t. In this paper, linear state and nonlinear measurement
models are considered [2]:

xt = f(xt−1) + vt = Fxt−1 + vt (1)

and

zt = g(xt) + wt (2)

where

F =




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1




and g(·) is a nonlinear measurement function. The Ts is the sampling
interval, vt is a 4 × 1 independent and identically distributed (i.i.d.)
process noise vector with vt ∼ N (0,Q), where 0 is a zero vector and
Q is the covariance matrix of the form of Ddiag(σ2

x, σ2
y)D

T , with σ2
x

and σ2
y are the variances in x-coordinate and y-coordinate, and D is

given as

D =




T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts




In our study, time-of-arrival (TOA) measurements under possibly
NLOS propagation are used. By multiplying the TOAs with the known
propagation speed, the observed distance measurement at time t of the
jth sensor is [3]:

zt,j = dt,j + φt,jηt,j + wt,j , t = 1, 2, . . . , j = 1, 2, . . . , M (3)
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where dt,j =
√

(xt − xj)2 + (yt − yj)2, M is the total number of
sensors in the WSN, (xj , yj) denotes the known coordinates of jth
sensor, wt,j is measurement noise, ηt,j is NLOS-induced error and φt,j

is the NLOS existence variable of the jth sensor at time t. The
distance measurement corresponds to LOS and NLOS propagation
when φt,j = 0 with probability qt,j and φt,j = 1 with probability 1−qt,j ,
respectively. The NLOS-induced error ηt,j is assumed a large positive
random variable which is valid particularly in open areas [11, 12]. In
the next section, three types of measurement noise distributions are
introduced, which will be used in Section 6 to evaluate the performance
of proposed method.

3. NOISE DISTRIBUTIONS

Even though most engineering systems in control, communication
and signal processing are devised under the assumption of Gaussian
noise, many physical environments can be modeled more accurately as
non-Gaussian rather than Gaussian observation channels. Examples
include, atmospheric noise, lightning spikes, electronic devices and
relay switching noise [13]. Therefore, it is important to develop a
tracking algorithm for LOS identification under non-Gaussian noise
case. Prior to the tracking algorithm development, we will introduce
three different types of measurement noises, namely, Gaussian,
Gaussian mixture and α-stable process since they are popular and
widely used in the fields of communications and signal processing.

3.1. Gaussian Noise

The Gaussian noise [14, 15] is the most popular choice used in many
areas, such as image processing, communications, and acoustics.
It is justified by the central limit theorem, which says that the
distribution of infinite numbers of i.i.d. random variables with finite
variance is Gaussian. Another reason for its popularity is that the
Gaussian distribution has closed-form probability density function
(PDF) expression, which leads to simple closed-form solutions in many
problems. The scalar Gaussian distribution for a random variable w is
given as follows:

fw(w) =
1√

2πσ2
exp

(
−(w − µ)2

2σ2

)
(4)

where µ and σ2 are the mean and variance, respectively.
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3.2. Gaussian Mixture Noise

In communication channels, the observation noise exhibits non-
Gaussian property due to impulsive noise and/or co-channel
interference. In fact, many types of non-Gaussian noise can be
modelled as a Gaussian mixture [16, 17]. The scalar Gaussian mixture
distribution is given as follows:

fw(w) =
Nm∑

l=1

λl√
2πσ2

l

exp
(
−(w − µl)2

2σ2
l

)
(5)

where λl denotes the probability that w is chosen from the lth model
in the mixture PDF, with

∑Nm
l=1 λl = 1, Nm is the number of models,

µl and σ2
l are the mean and variance in the lth model, respectively.

This model will also be used to approximate α-stable distribution in
the Appendix.

3.3. α-stable Noise

Theoretical justification for using stable distribution as a statistical
modeling tool comes from the generalized central limit theorem in
stable case [18–20]. It states that if the sum of i.i.d. random variables
with or without finite variance converges to a distribution by increasing
the number of variables, the limit distribution must belong to the
family of stable laws. The main difference between the stable and
Gaussian distributions is that the tails of the stable density are heavier
than those of the Gaussian density. This characteristic of the stable
distribution is one of the main reasons why it is suitable for modeling
impulsive noise. In addition, the stable distribution is very flexible
because it has a parameter α (0 < α ≤ 2), called the characteristic
exponent, that controls the heaviness of its tails. As the value of α
becomes smaller, the impulsiveness becomes more severe. Specially,
when α = 2, the stable distribution is the Gaussian distribution.
In general, there is no closed-form expression for the PDF of stable
distributions. The most convenient way to define them is to use the
characteristic function

ϕ(t) = exp {jat− γ|t|α [1 + jβsign(t)ω(t, α)]} (6)
where

ω(t, α) =
{

tanαπ/2, if α 6= 1
1/α log |t|, if α = 1

sign(t) =

{ 1, if t > 0
0, if t = 0
−1, if t < 0
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The meanings of α, γ, β and a are:

• α (0 < α ≤ 2) is the characteristic exponent. It is the
most important parameter as it determines the shape of the
distribution. It controls the heaviness of the tails of the density
function. A small value of α indicates severe impulsiveness.

• γ (γ > 0) is the dispersion parameter. It determines the spread
of the density. It acts in a similar way to the variance of the
Gaussian density, and it is, in fact, equal to half of the variance
for the Gaussian case.

• β (−1 ≤ β ≤ 1) is the symmetry parameter, and β = 0
corresponds to symmetric α-stable (SαS) distribution, that is
symmetric about a.

• a (−∞ < a < ∞) is the location parameter. It is the mean when
1 < α ≤ 2 and the median when 0 < α < 1 for SαS distributions.

The algorithm development in this paper is based on PF.
Therefore, in the next section, the details of PF are introduced.

4. PARTICLE FILTER

PF has been successfully applied in many nonlinear and/or non-
Gaussian problems. It is a sequential Monte Carlo approach
using particles and associated weights to approximate the posterior
distribution of interest [6, 21–24]. In PF, two essential steps recursively
proceed: prediction according to properly designed importance
function, and update using latest measurements to evaluate particles’
weights. The steps of PF are summarized in Table 1 and more
information on the PF mechanism can be found in [21, 22].

We clearly see that one makes an assumption about the prior
knowledge of measurement noise distributions in developing PF.
However, there is a risk of degraded performance if the assumed
distribution is mismatched with the real case. For those situations,
robust approach without prior noise information is proposed in [8, 9],
called CRPF. The main idea of CRPF is to use a cost function
to evaluate particle quality without measurement noise distribution
information to track the target. In this paper, we utilize the CRPF
to perform tracking. To cope with different measurement noises, Lp-
norm is adopted to compute the particle cost. The steps on CRPF are
summarized in Table 2 and the interested reader is referred to [8, 9] for
comprehensive readings on CRPF.

The above algorithm does not consider NLOS propagation case.
To track the target in that case, in the following section, we develop a
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Table 1. Particle filtering algorithm.

(i) Initialization:
For i = 1, . . . , N , sample the state particle xi

0 ∼ p(x0)
(ii) Prediction of particles:
For i = 1, . . . , N , draw particles

x(i)
t ∼ q

(
xt|x(i)

t−1, z1:t

)

where q(·) is an importance function,
z1:t = {z1, z2, . . . , zt} denotes all the observations up to
the current time t and zt = [zt,1, . . . , zt,M ]T .
(iii) Update:
For i = 1, . . . , N , evaluate the importance weight:

w
(i)
t ∝ w

(i)
t−1 ×

p
(
zt|x(i)

t

)
p
(
x

(i)
t |x(i)

t−1

)

q
(
xt|x(i)

t−1,z1:t

)

For i = 1, . . . , N , normalize the importance weight:
w̃i

t = wi
t/

∑N
j=1 wj

t

(iv) Resampling step: (if necessary)
Eliminate samples with low importance weights and
multiply samples with high importance weights.
For i = 1, . . . , N , set wi

t = 1/N .
(v) Estimation step:
The minimum mean square error estimate of state
is obtained as:

x̂t ≈
∑N

i=1 w
(i)
t x(i)

t

LOS identification algorithm with the use of Lp-norm under different
noise distributions.

5. LINE-OF-SIGHT IDENTIFICATION

NLOS error is one of the major sources that deteriorates tracking
performance. In our study, we perform LOS identification prior
to target tracking. Our LOS identification idea is to calculate the
quality of each measurement, which can be seen as a probability of
measurement whether it is under LOS propagation or not. Then, we
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Table 2. Cost-reference particle filtering algorithm.

(i) Initialization:
For i = 1, . . . , N , sample the state particle xi

0 ∼ p (x0),
and set costs si

0 = 0
(ii) Prediction of particles:
For i = 1, . . . , N , draw particles

x(i)
t ∼ q

(
xt|x(i)

t−1, z1:t

)

where q(·) is an importance function,
z1:t = {z1, z2, . . . , zt} denotes all the observations up to
the current time t and zt = [zt,1, . . . , zt,M ]T .
(iii) Cost calculation:
For i = 1, . . . , N , evaluate the cost:
si
t = τsi

t−1 + ∆si
t

where ∆si
t =

∥∥zt − ẑi
t

∥∥
p
, ẑi

t = g
(
xi

t

)
, ‖ · ‖ is Lp-norm.

Then, calculate the corresponding weight by wi
t = 1/si

t

(iv) Resampling step: (if necessary)
(v) Estimation step:
The minimum mean square error estimate of state
is obtained as:

x̂t ≈
∑N

i=1 w
(i)
t x(i)

t

select three most qualified measurements to perform tracking using
CRPFs because the risk of deciding a NLOS measurement as a LOS
measurement will be minimized in an intuitive sense while unique
positioning is guaranteed in the 2D scenario. Of course, a threshold can
be set to select the LOS measurements, but it is difficult to determine
and the tracking performance is sensitive to the threshold. First we
assume that the measurement noise wt is distributed as N (0, σ2I),
where I is the identity matrix and σ2 is known. It serves as a starting
point for the algorithm development. As mentioned earlier, the NLOS-
induced error is a large positive random variable, which means that
the signal residue of the NLOS measurement is larger than that of
LOS measurement. As a result, we calculate the quality of each
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measurement as follows

ϕt+1,j =
1√

2πσ2
exp

(
−(zt+1,j − dt+1,j)2

2σ2

)
, j = 1, 2, . . . , M (7)

The larger value means the higher chance of the measurement is under
LOS propagation. One problem is that the true distance dt+1,j is
not available at time (t + 1). Fortunately, based on CRPF, the
prediction of distance is achieved using xt+1 = 1/N

∑N
i=1 xi

t+1 and
yt+1 = 1/N

∑N
i=1 yi

t+1, where (xi
t+1, yi

t+1) is prediction of position
in the CRPF. The prediction of distance is calculated as dt+1,j =√

(xt+1 − xj)2 + (yt+1 − yj)2. In practice, instead of (7), we employ:

ϕt+1,j =
1√

2πσ2
exp

(
−(zt+1,j − dt+1,j)2

2σ2

)
, j = 1, 2, . . . , M (8)

The above calculation needs the value of the noise variance, which
may be unknown. Moreover, the assumption of Gaussian distributed
noise may not be valid as well [16, 23]. In fact, the exact value of
probability is not necessary to select LOS measurements. That is, we
essentially only need a measure under a certain criterion to indicate the
measurement quality. Based on this idea, we propose to use Lp-norm to
calculate the quality of each measurement without knowledge of noise
distribution and NLOS-induced error. In mathematical expression, the
calculation of signal residue ct+1,j and measurement quality ϕt+1,j is
given as follows

ct+1,j = ‖zt+1,j − dt+1,j‖p

ϕt+1,j = 1/ct+1,j , j = 1, 2, . . . , M
(9)

In the same manner, we pick the three most qualified
measurements inf the CRPFs.

In summary, the pseudo-code of the two major steps for LOS iden-
tification with CRPFs are given in Table 3.

Table 3. Particle filters with LOS identification.

(i) LOS identification:
–Based on (8) when the noise is known and Gaussian
distributed or (9) when the noise distribution is not available.
(ii) CRPF:
— Use identified LOS measurements to perform tracking
in CRPFs.
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6. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the tracking
performance of the proposed methods by comparing to posterior
Cramer-Rao lower bound (PCRLB) [6] and [3] when the measurement
is Gaussian distributed. The main purpose here is to test the proposed
method under different measurement noise scenarios. In the α-stable
noise case, the PCRLB is calculated by using the estimated Gaussian
mixture model (GMM) parameters in the Appendix. CRPF schemes
with transition prior, EKF and UKF as importance functions are
denoted by CRPF, CRPF-EKF and CRPF-UKF, respectively. The
mean square error (MSE) is chosen as the performance measure. Unless
stated otherwise, we assume that there are M = 10 sensors randomly
deployed on a 2D WSN of dimension 500×500m2, and the initial state
vector of the target is [50 m, 40m, 7m/s, 6m/s]T . The sampling time
is Ts = 1 s. The number of particles is N = 100. The τ = 0 is used in
the CRPFs. The NLOS-induced error ηt,j is generated by exponential
distribution with mean 100 m. The PF is randomly initialized around
the true values. All results provided are averages of 2000 independent
runs. The results of three noise distributions are illustrated separately
as follows.

6.1. Gaussian Noise

In the first test, the validity of proposed approach is investigated.
The measurement noise is Gaussian distributed with variance σ2 =
1. The value of p = 2 is used when no knowledge of noise
distribution is available. Three sensors out of 10 sensors are under
LOS condition while other seven sensors are under NLOS propagation
with probability qt,j = 0.5. In doing so, at least three sensors being
under LOS propagation is guaranteed. In Figure 1, the MSEs of
the CRPFs are plotted. The LOS identification carried out by (8) is
denoted by CRPFs (Congzhuang), which means that the noise variance
information is used as in [3]. The LOS identification calculated by (9) is
denoted by CRPFs (unknown), which means that the noise variance is
not utilized. It is seen that the performance of the proposed methods
using (9) is similar to that of the ones using (8), which proves the
effectiveness of the proposed approach. The performance of the CRPF-
UKF and CRPF-EKF is superior to that of the CRPF. Notice that we
also plot the performance of the proposed method with M = 20. From
Figure 1, we can see that the performance of the proposed method
does provide the same level of performance for two densities of sensors
in the network. However, the performance in general will be improved
as the sensor network becomes denser since the mean distance between
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the target and sensor is smaller. Due to the limited measurements, the
performance of CRPFs cannot approach PCRLB.

In the second test, we test the performance of proposed
method under different NLOS probability qt,j . We assume that all
measurements are under NLOS propagation with certain probability
while other settings remain as in the first test. In this test, three
most qualified measurements are selected without noise distribution
information and CRPF-UKF is examined. In Figure 2, the MSEs of
CRPFs are plotted for different qt,j . For sufficiently small probability
qt,j , it is very likely that there are three LOS measurements. As the
probability qt,j increases indicating the more severe NLOS propagation,
the performance becomes more degraded.

0 10 20 30 40 50 60
10 -1

100

101

102

103

104

Time (s)

M
S

E
 (

m
  
 )2

MSE by CRPF (unknwon)

MSE  by CRPF EKF (unknwon)

MSE by CRPF UKF (unknown)

MSE by CRPF (Cong Zhuang)

MSE  by CRPF EKF (Cong Zhuang)

MSE by CRPF UKF (Cong Zhuang)

MSE by CRPF UKF (unknwon) with M=20

PCRLB

Figure 1. Mean square error under Gaussian noise.
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6.2. Gaussian Mixture Noise

In this test, the proposed method under the Gaussian mixture
measurement noise is investigated. The other settings remain as
in the first test. Specifically, two Gaussian components are used:
wt,j ∼ 0.5N (0, 1) + 0.5N (0, 0.01). Since the finite moment still exists,
p = 2 is used in this case. The MSEs are plotted in Figure 3. It is
observed that the proposed approach works well under the GMM noise
case. Since the UKF approximates the posterior distribution better
than the EKF, it is observed that the performance of the CRPF-UKF
is superior to that of the CRPF-EKF.

6.3. α-stable Noise

In this test, the α-stable process is assigned as the measurement noise.
The α = 1.5, σ = 1, β = 0, µ = 0 are used to generate α-stable process.

First, the algorithm in Appendix is utilized to approximate
the α-stable process with 1000 samples. The value of Nm starts
at 20 in GMM. The parameters in GMM are calculated finally as
{(µ̂1 = 0.5168, σ̂2

1 = 18.3144, λ̂1 = 0.1603), (µ̂2 = −0.7159, σ̂2
2 =

1.3685, λ̂2 = 0.3590), (µ̂3 = 0.5530, σ̂2
3 = 1.5978, λ̂3 = 0.1697), (µ̂4 =

−1.7912, σ̂2
4 = 802.7704, λ̂4 = 0.011)}.

Second, in Figure 4, the MSEs of the CRPFs are plotted under the
α-stable noise. The p = 1 is used in Lp-norm. The CRPF-UKF gives
the best performance. The PCRLB is calculated by the parameters
computed according to the approximated GMM.

Third, the effect of the different values of p in Lp-norm is examined
in Figure 5. The value of p must be less than the value of α in the case
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Figure 5. Mean square error under different values of p for CRPF-
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of stable process to assure the existence of the fractional moments of
order p. This is verified by the results in Figure 5. It is seen that the
performance is more degraded when p ≥ α compared with that when
p < α. All the lower order moments give similar performance since
they are equivalent for a stable process.

7. CONCLUSION

Target tracking with the use of cost-reference particle filter is proposed
to handle non-line-of-sight (NLOS)-induced error under different
measurement noise distributions. According to the Lp-norm criterion,
the quality of each measurement being line-of-sight (LOS) propagation
is calculated. Then, the most qualified LOS measurements are selected
to be utilized in tracking. Computer simulation results demonstrate
the validity of the proposed methods.

APPENDIX A.

Since the α-stable distributions do not share closed-form expressions
of PDFs, it will be very convenient if we can model them with a
closed-form distribution much like Gaussian thanks to its analytical
characteristic. Mixture models are able to represent arbitrarily
complex PDFs, specially, GMM is the most commonly used so far.
Therefore, GMM is a natural option. The standard method used
to fit finite mixture models to the observed data is the expectation-
maximization (EM) algorithm [19], which is a maximum-likelihood
estimator to estimate the parameters of GMM iteratively. However,
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it is sensitive to initialization and needs to know the number of
components in mixture models a priori, which usually is hard to
obtain in practice. Due to the above mentioned drawbacks of the
EM algorithm, a clustering algorithm proposed in [26] is adapted
to approximate the α-stable distribution using GMM in this paper.
Consider a α-stable distribution is approximated by GMM as follows:

pα(y) ≈ p(y|θ) =
Nm∑

l=1

λlp
(
y|µl, σ

2
l

)
(A1)

where pα(·), p(·) represent the α-stable distribution and Gaussian
distribution, respectively, θ = {θ1, . . . ,θNm , λ1, . . . , λNm} is the set of
the Gaussian distribution parameters to be estimated to approximate
the α-stable distribution, where θl = {µl, σ

2
l }. According to the

minimum message length criterion, the optimization problem to
estimate the parameters is given as follows [26]:

θ̂ = arg min
θ
L(θ,Y) (A2)

with

L(θ,Y)=
Nd

2

∑

l,λl>0

log
(

nλl

12

)
+

kn

2
log

n

12
+

kn(Nd+1)
2

−log p(Y|θ) (A3)

where Y = {y1, . . . , yn}, kn ∈ {1, 2, . . . , Nm}, Nd is the dimensionality
of θl. For this cost function, the EM algorithm has following E-step
and M-step:
• E-Step: Compute the conditional expectation of the complete log-
likelihood, given Y and the current estimate θ̂(k) with missing data
Z = {z1, . . . , zn} indicating which component produces each sample
and each component is a binary vector zq = [zq

1, . . . , z
q
Nm

]. The condi-
tional expectation of element of Z is given by:

wq
l = E

[
zq
l |Y, θ̂(k)

]
=

λ̂l(k)p
(
yq|θ̂l(k)

)

∑Nm
m=1 λ̂m(k)p

(
yq|θ̂m(k)

) (A4)

• M-Step: Update the parameter estimates according to:

λ̂l(k+1) =
max

{
0,

(∑n
q=1 wq

l

)
−Nd

2

}

∑Nm
m=1 max

{
0,

(∑n
q=1 wq

m

)
−Nd

2

} l = 1, 2, . . . , Nm (A5)

µ̂l(k+1) =




n∑

q=1

wq
l



−1

n∑

q=1

yqw
q
l (A6)
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σ̂2
l (k+1) =




n∑

q=1

wq
l



−1

n∑

q=1

(yq − µ̂l(k + 1))2wq
l (A7)

This procedure starts with kn = Nm and repeats until kn = 1. The
algorithm produces a sequence of estimates {θ̂(k), k = 0, 1, 2, . . .}
through applying the above two steps until convergence, i.e., when
the relative difference in L(θ̂(k),Y) is less than a threshold of 10−6.
Finally, the parameters that give the minimum value of L(θ,Y) will
be the estimates.
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