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Abstract—The capacitance of the circular parallel plate capacitor is
calculated by expanding the solution to the Love integral equation
into a Fourier cosine series. Previously, this kind of expansion has
been carried out numerically, resulting in accuracy problems at small
plate separations. We show that this bottleneck can be alleviated, by
calculating all expansion integrals analytically in terms of the Sine and
Cosine integrals. Hence, we can, in the approximation of the kernel, use
considerably larger matrices, resulting in improved numerical accuracy
for the capacitance. In order to improve the accuracy at the smallest
separations, we develop a heuristic extrapolation scheme that takes
into account the convergence properties of the algorithm. Our results
are compared with other numerical results from the literature and with
the Kirchhoff result. Error estimates are presented, from which we
conclude that our results is a substantial improvement compared with
earlier numerical results.

1. INTRODUCTION

The exact capacitance of the circular parallel plate capacitor, with
infinitely thin plates, remains an unsolved problem in potential
theory, in the sense that to this date no explicit analytical solution
has been reported. However, the problem can be formulated as a
Fredholm integral equation of the second kind, known as Love’s integral
equation [1], which can be solved numerically.

To our knowledge, the up to date most accurate studies of the
capacitance at small plate separations are the ones by Wintle and
Kurylowicz [2] and by Carlson and Illman [3]. Both of these studies
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have been used as benchmarks for solutions obtained by other methods;
see e.g., [4, 5, 6]. Wintle and Kurylowicz [2] use an El-Gendi method
[7] to rewrite the Love equation and apply numerical integration using
the Clenshow-Curtis quadrature method [8] to obtain the capacitance.
Carlson and Illman [3] solve the Love equation through an expansion of
the kernel into a Fourier-cosine series. Later, they have also extended
that method to solve the three-plate problem by means of coupled Love
type equations [9]. It is known [1] that for small plate separations,
a solution obtained via a series expansion of the kernel converges
slowly, requiring a large number of expansion terms. To calculate
the expansion coefficients of the kernel, Carlson and Illman [3] use
numerical integration. Hence, their method is limited by a combination
of the accuracy of the integration and the large number of terms
needed. The accumulated errors effectively limit the expansion to
about 100 terms, which is insufficient for convergence at very small
separations.

In this paper, we show that all of the integrals in the series
expansion in [3] can be expressed analytically in terms of the well-
studied Sine- and Cosine integrals. In this way, we improve the
numerical accuracy of the expansion coefficients up to the accuracy
of the evaluations of the Sine- and Cosine integrals, which makes it
possible to increase the number of expansion functions considerably.
Hence, in our method, the numerical accuracy in the capacitance is
mainly limited by the truncation of the number of expansion functions.
Thus, we can present improved results for the capacitance at small
plate separations; results that surpass the results in [2, 3], both in
correctness and in the significant numbers of digits. Our results are also
in excellent agreement with the result by Kirchhoff[10], which becomes
increasingly accurate when the plate separation tends to zero [11, 12].

The paper is organized as follows: In Section 2, we review
the expansion method, originally presented in [3]. In Section 3,
we derive the analytical expressions for all the expansion integrals.
Numerical results are presented in Section 4 and Section 5 contains
some conclusions.

2. PROBLEM FORMULATION AND INITIAL ANALYSIS

The circular parallel plate capacitor is depicted in Figure 1. The
distance between the circular plates is denoted d and their common
radius is denoted a. The model is idealized in the sense that the plates
have zero thicknesses. Following the notation used in many of the
previous studies of this problem, we let κ = d/a denote the normalized
separation between the plates.
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Figure 1. The circular parallel plate capacitor (side view slightly from
above).

The capacitance of the parallel plate capacitor is [3]

C = 4ε0a

∫ 1

0
f(s) ds, (1)

where the function f(s) is the solution to the modified Love integral
equation

f(s)−
∫ 1

0
K(s, t) f(t) dt = 1, 0 ≤ s ≤ 1, (2)

with kernel

K(s, t) =
κ

π

[
1

κ2 + (s− t)2
+

1
κ2 + (s + t)2

]
. (3)

Note that in the original derivation by Love [1], the kernel and the
function are defined in the range −1 ≤ s, t ≤ 1, and the kernel has
only one term, but since f(s) can be shown to be even one can instead
use the formulations (2) and (3) (an elegant and short derivation of
Love’s integral equation can be found in [12]).

To solve Equation (2) numerically, we follow the approach in [3]
and expand the kernel and the unknown function into the Fourier-
cosine expansion functions

ψm(s) =
√

2− δm0 cos(mπs) , m = 0, 1, . . . , (4)

which in our study have been normalized to fulfil the orthogonality
relation ∫ 1

0
ψm(s) ψm′(s) ds = δmm′ , (5)

where δmm′ denotes the Kronecker delta function. Note that similarly
to f(s) all ψm-functions have vanishing first derivatives at s = 0.

Carrying out the expansions of f(s) and K(s, t), in terms of {ψm},
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we obtain

f(s) =
∞∑

m=0

fmψm(s) , (6)

fm =
∫ 1

0
f(s) ψm(s) ds, (7)

K(s, t) =
∞∑

m=0

∞∑

n=0

Kmnψm(s) ψn(t) , (8)

Kmn =
∫ 1

0

∫ 1

0
K(s, t) ψm(s) ψn(t) dsdt, (9)

which yield the following infinite linear system of equations for the
coefficients {fn}∞n=0:

∞∑

n=0

(δmn −Kmn) fn = δm0, m = 0, 1, . . . . (10)

From (1), (6) and the orthogonality of (4), the capacitance reduces to

C = 4ε0af0, (11)

where f0 is simply the (0,0)-element in the inverse of the matrix with
elements δmn −Kmn.

In the numerical implementation the matrix is truncated into the
size 0 ≤ m,n ≤ N , where we call N the truncation number. It is
well-known [11, 3] that at small separations, κ, large values of N are
required to obtain convergence of f0 in (11). Also, for the accuracy
of the result, it is crucial that the matrix elements Kmn, given by the
integrals in (9), have been calculated with a high accuracy.

For small values of κ the kernel K(s, t) has a pronounced crest at
s = t, making it difficult to evaluate the integrals in (9) numerically.
In [3] this problem has been alleviated, by adding and subtracting a
suitable term to the kernel, thereby removing the crest in one of the
integrals, and making the inner integral in the other integral available
for explicit evaluation. A related procedure has also been used earlier
in [2]. However, a remaining problem is that for large values of m, n
the expansion functions (4) yield rapidly oscillating integrands, which
(when integrated numerically) result in slow convergence and poor
accuracy. Hence, it would be beneficial if all integrals, encountered
when expanding the kernel, could be expressed analytically in terms of
established functions, readily available for numerical evaluation with a
high accuracy. In the next section we will show that this is indeed the
case.
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3. EXPANSION OF THE KERNEL INTO SINE AND
COSINE INTEGRALS

In this section, we derive the analytical expressions for the expansion of
the kernel K(s, t). First, we notice from (3) and (9) that the expansion
coefficients have the property Knm = Kmn, resulting in a symmetric
matrix. For the special cases when the indices coincide and/or becomes
zero, it is advantageous for the numerical evaluation to derive special
simplified expressions for Kmn. In most of the derivations, we utilize
the following properties of the Sine and Cosine integrals [13]:

Si(z∗) = [Si(z)]∗ , (12)
Ci(z∗) = [Ci(z)]∗ , (13)
Si(−z) = −Si(z) , (14)
Ci(−z) = Ci(z)− jπ (0 < arg z < π) , (15)

where ∗ denotes complex conjugation and j denotes the imaginary unit.

3.1. Case m = n = 0

By elementary integrals, we obtain

K0,0 =
∫ 1

0

∫ 1

0
K(s, t) ds dt (16)

=
κ

π

∫ 1

0

{∫ 1

0

[
1

κ2 + (s− t)2
+

1
κ2 + (s + t)2

]
ds

}
dt

=
1
π

∫ 1

0

[
arctan

(
t + 1

κ

)
− arctan

(
t− 1

κ

)]
dt

=
1
2π

[
4 arctan

(
2
κ

)
− κ ln

(
1 +

4
κ2

)]
. (17)

3.2. Cases m = 0, n > 0

Here the inner integral is the same as in the previous case, resulting in

K0n =
√

2
∫ 1

0

∫ 1

0
K(s, t) cos(nπt) ds dt

=
√

2
π

∫ 1

0

[
arctan

(
t + 1

κ

)
− arctan

(
t− 1

κ

)]
cos(nπt) dt.(18)

Defining the function

I1(β, κ, α) =
∫ 1

0
cos(βt) arctan

(
t + α

κ

)
dt, (19)
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it follows that

K0n =
√

2
π

[I1(nπ, κ, 1)− I1(nπ, κ,−1)] . (20)

By a change of variable, u =
t + α

κ
, and integration by parts, we obtain

I1(β, κ, α) =
sin(β)

β
arctan

(
1 + α

κ

)

− 1
β

∫ (1+α)/κ

α/κ

sin
(
β(κu− α)

)

1 + u2
du =

sin(β)
β

arctan
(

1 + α

κ

)

+
1
β

Im
{

sin
(
β (α + jκ)

)(
Ci

(
β (α + jκ)

)− Ci
(
β (α + 1 + jκ)

))

− cos
(
β (α + jκ)

)(
Si

(
β (α + jκ)

)− Si
(
β (α + 1 + jκ)

))}
. (21)

The evaluation of the last integral was carried out in the Maple
software, and the result was simplified using the trigonometric-
hyberbolic addition formulas and the properties (12) and (13).

Insertion of (21) into (20) and further simplifications yield

K0n =
√

2
nπ2

Im
{

cos
(
nπ (1 + jκ)

)
Si

(
nπ (2 + jκ)

)
+ cos

(
nπ (1− jκ)

)
Si(−jnπκ)

− sin
(
nπ (1 + jκ)

)
Ci

(
nπ (2 + jκ)

)− sin
(
nπ (1− jκ)

)
Ci(−jnπκ)

}
. (22)

3.3. Cases m 6= n,m > 0, n > 0

Here, we obtain

Kmn = 2
∫ 1

0

∫ 1

0
K(s, t) cos(nπt) cos(mπs) dt ds

=
2
π

∫ 1

0

∫ 1

0

[
κ

κ2 + (s− t)2
+

κ

κ2 + (s + t)2

]

cos(nπt) cos(mπs) dt ds. (23)
Defining the function

I2(β, κ, α) =
∫ 1

0

κ cos(βt)
κ2 + (t + α)2

dt, (24)

it follows that

Kmn =
2
π

∫ 1

0
[I2(nπ, κ,−s) + I2(nπ, κ, s)] cos(mπs) ds. (25)



Progress In Electromagnetics Research, PIER 97, 2009 363

Again, using Maple and some simplifications it follows that

I2(β, κ, α)=Im
{

sin
(
β (α + jκ)

)(
Si

(
β (α + jκ)

)−Si
(
β (α + 1 + jκ)

))

+ cos
(
β (α + jκ)

)(
Ci

(
β (α + jκ)

)− Ci
(
β (α + 1 + jκ)

))}
. (26)

Using (12)–(15), it follows that

I2(β, κ,−s) + I2(β, κ, s) = −Im
{

sin
(
β (s + jκ)

)
Si

(
β (s + 1 + jκ)

)

+cos
(
β (s + jκ)

)
Ci

(
β (s + 1 + jκ)

)
+sin

(
β (s− jκ)

)
Si

(
β (s− 1− jκ)

)

+ cos
(
β (s− jκ)

)
Ci

(
β (s− 1− jκ)

)}
. (27)

Inserting (27) into the expression (25) for Kmn, we can write

Kmn =
2
π

I3(nπ, κ, mπ) , (28)

where the function

I3(β, κ, γ) =
∫ 1

0

[
I2(β, κ,−s) + I2(β, κ, s)

]
cos(γs) ds

= −1
2
Im

{ ∫ 1

0

[(
sin

(
(β + γ) s + jκ

)
+ sin

(
(β − γ) s + jκ

))

Si
(
β (s + 1 + jκ)

)
+

(
cos

(
(β + γ) s + jκ

)
+ cos

(
(β − γ) s + jκ

))

Ci
(
β (s + 1 + jκ)

)
+

(
sin

(
(β + γ) s− jκ

)
+ sin

(
(β − γ) s− jκ

))

Si
(
β (s− 1− jκ)

)
+

(
cos

(
(β + γ) s− jκ

)
+ cos

(
(β − γ) s− jκ

))

Ci
(
β (s− 1− jκ)

)]
ds

}
= −1

2
Im

{
I4(β + γ, β, jκ, 1 + jκ)

+I4(β + γ, β,−jκ,−1− jκ) + I4(β − γ, β, jκ, 1 + jκ)
+I4(β − γ, β,−jκ,−1− jκ)

}
, (29)

and where

I4(q, β, z1, z2)

=
∫ 1

0
[sin(qs + βz1) Si(βs + βz2)+ cos(qs + βz1) Ci(βs + βz2)] ds

=
1
q

[
sin(βz1 + q)Ci

(
β (1 + z2)

)− cos(βz1 + q) Si
(
β (1 + z2)

)

− sin(βz1)Ci(βz2) + cos(βz1) Si(βz2)
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+cos(βz1 − qz2)
(
Si

(
(β − q) (1 + z2)

)− Si
(
(β − q) z2

))

− sin(βz1 − qz2)
(
Ci

(
(β − q) (1 + z2)

)− Ci
(
(β − q) z2

))]
. (30)

To derive (30), we utilized the trigonometric addition formulas and the
integration formulas 5.31 and 5.32 in [14]. Summarizing, we obtain

Kmn = − 1
π

Im
{
I4

(
(n + m) π, nπ, jκ, 1 + jκ

)
+ I4

(
(n + m) π, nπ,−jκ,−1− jκ

)

+I4

(
(n−m) π, nπ, jκ, 1 + jκ

)
+ I4

(
(n−m)π, nπ,−jκ,−1− jκ

)}
.(31)

3.4. Cases m = n > 0

In cases when m = n > 0 the last two terms in (31) are not suitable
for numerical evaluation, since in the final expression in (30) the limit
q → 0 must be taken. Alternatively, we can start with setting q = 0 in
the integrand in (30); the result reduces to

Knn = − 1
π

Im
{

I4(2nπ, nπ, jκ, 1 + jκ) + I4(2nπ, nπ,−jκ,−1− jκ)

+ sin(jnπκ)
∫ 1

0

(
Si

(
nπ (s + 1 + jκ)

)− Si
(
nπ (s− 1− jκ)

))
ds

+cos(jnπκ)
∫ 1

0

(
Ci

(
nπ (s + 1 + jκ)

)− Ci
(
nπ (s− 1− jκ)

))
ds

}

= − 1
π

Im
{

I4(2nπ, nπ, jκ, 1 + jκ) + I4(2nπ, nπ,−jκ,−1− jκ)

+j sinh(nπκ)
(

(2 + jκ) Si
(
nπ (2 + jκ)

)− jκSi(jnπκ)
)

+cosh(nπκ)
(

(2 + jκ)Ci
(
nπ (2 + jκ)

)− jκCi(jnπκ)− jπ
)}

. (32)

4. NUMERICAL CALCULATIONS

The here presented improved expansion is most useful at small
separations, wherefore we restrict our study to values κ ≤ 0.01; results
obtained at larger separations are readily available in the literature,
with some of the most accurate in [2, 3].

The value of the truncation number is dictated mainly by the
computational resources at hand. Here, we have used a maximum
value of N = 15000, at the smallest separations.



Progress In Electromagnetics Research, PIER 97, 2009 365

All our results will be presented in terms of the normalized
capacitance C = C/ (4ε0a), where 4ε0a is the capacitance between
two infinitely separated disks. Hence, it follows from (11) that C = f0.

4.1. Extrapolation Schemes

To improve our numerical results, we have employed extrapolation.

4.1.1. Power Law Model

First, we considered a simple power law model for the capacitance:

f0(N) = Ĉ − β (Nκ)−α , (33)

where f0(N) is the result obtained when using the truncation N in
Equation (10), Ĉ is the extrapolated estimate in the limit N → ∞; α
and β (assuming α > 0, β > 0) are coefficients that are determined
together with Ĉ.

In our initial tests, the extrapolation parameters, α, β, Ĉ, were
determined by fitting (33) to f0(N) , f0(N/2) and f0(N/3) (using
rounded values for the fractions of N when necessary). In Table 1 we
present our results, for various separations κ, for two different values
of the product Nκ.

An important observation in Table 1 is that for constant values of
Nκ the values of the parameters α and β are approximately constant,
regardless of the value of κ. This is especially true for Nκ = 1, but
also for the smaller κ-values when Nκ = 0.2. The results for Nκ =
0.2 (farther from convergence) and Nκ = 1 (closer to convergence)
together indicate that the extrapolation scheme over-estimates the
capacitance. Another observation from the data in Table 1 is that
for each value of Nκ the amount of extrapolation is approximately the
same, regardless of the value of κ.

4.1.2. Heuristic Model for Improvement at Low Accuracies

Considering decreasing separations κ, the limitation of the truncation
N will eventually force us to use smaller values of Nκ, this delays
the convergence. However, the properties of the convergence, as
demonstrated in Table 1, offer an opportunity to improve poorly
converged results, by using the following heuristic model:

f0(N) = C̃ + h(Nκ) , (34)

where the term −β (Nκ)−α in (33) has been replaced by a general
function h(Nκ). Using Equation (34), we have developed a heuristic
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extrapolation method that is based on the assumption that when going
from one κ-value to the next smaller value the function h remains
almost unchanged. To verify this, we have compared the h-functions
obtained at three different values of κ. We used Equation (34), setting
C̃ = Ĉ, with Ĉ taken from the seventh column in Table 1. The results
are given in Figure 2, as function of (Nκ)−1 for the values between
the ones in Table 1. The h-functions in Figure 2 essentially illustrate
the convergence, with higher degree of convergence at lower (Nκ)−1

values, where the h-values at (Nκ)−1 = 1 indicate the amount left
to extrapolate. The three curves are essentially spanning over the
same distance, especially those at the smaller separations κ = 0.001
and κ = 0.0001, for easier comparison. The nearly overlapping curves
indicate that the convergence of the matrix inversion is determined
mainly by the product Nκ.

Table 1. The extrapolation parameters, α, β and Ĉ, obtained when
fitting the power law extrapolation model (33) to f0(N) , f0(N/2) and
f0(N/3). The estimate of the true capacitance is C = 4ε0aĈ.

Nκ = 0.2
κ f0(N) Ĉ α β ·102

0.01 80.235 80.539 1.380 3.30
0.005 158.937 159.240 1.431 3.03
0.002 394.778 395.078 1.472 2.81
0.001 787.647 787.946 1.486 2.73
0.0005 1573.217 1573.516 1.492 2.71
0.0002 3929.640 3929.849 1.496 2.69
0.0001 7856.804 7857.102 1.498 2.69

Nκ = 1
κ f0(N) Ĉ α β ·103

0.01 80.4312 80.4363 2.358 5.15
0.005 159.1384 159.1436 2.377 5.14
0.002 394.9827 394.9878 2.384 5.16
0.001 787.8533 787.8585 2.386 5.16
0.0005 1573.4238 1573.4290 2.388 5.16
0.0002 3929.8466 3929.8518 2.389 5.16
0.0001 7857.0105 7857.0156 2.391 5.15
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0

Figure 2. Comparison of the estimated h-functions, obtained from
equation (34), for three different orders of the separation κ. The h-
function essentially indicates how close to convergence the calculation
of C is, flatness of the curve for high Nκ values indicates that C has
essentially the distance |h(Nk)| left to its approximately true value.

Now, having confirmed the assumption, the heuristic extrapola-
tion method works as follows:

i Order the considered κ-values as κ0 > κ1 > κ2 > . . ., with
N, f0(N) , C̃ and h indexed analogously.

ii Starting with κ0, for which we already have assumed a fairly good
convergence by using a moderate number of expansion functions
(see Figure 2), and using the power law (33), with a truncation
number N0, we obtain the extrapolation Ĉ0. This is taken as the
starting value, C̃0 = Ĉ0, for our improved algorithm, which from
now proceeds repetitively:

iii Increment the index (denoted i). Use equation (34) to find the
h-function from the previous step:

hi−1(Ni−1κi−1) = f0,i−1(Ni−1)− C̃i−1. (35)

Let ni−1 be a truncation number fulfilling

Niκi = ni−1κi−1. (36)

Assuming that hi = hi−1, it follows from (34) and (36) that

f0,i(Ni)− C̃i = f0,i−1(ni−1)− C̃i−1 = f0,i−1

(
κi

κi−1
Ni

)
− C̃i−1, (37)

from which the extrapolated capacitance becomes

C̃i = f0,i(Ni) + C̃i−1 − f0,i−1

(
κi

κi−1
Ni

)
. (38)
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Note that ni−1, determined from (36), must fulfil ni−1 ≤ Ni−1,
and if ni−1 does not becomes an integer the last term in (38) must
be evaluated by interpolation between the adjacent integer values.

iv Repeat step 3 until the final (smallest) κ-value has been
considered.

4.2. Results for the Capacitance

At small separations, the first approximation to the capacitance is the
geometric capacitance Cg = π/(4κ). A much better approximation is
the result by Kirchhoff [10]:

Ck ≈ π

4κ
+

1
4

ln
(

1
κ

)
+

1
4

[ln(16π)− 1] + o(1) . (39)

This formula, which has been proved rigourously by Hutson [11],
becomes increasingly accurate as κ decreases.

Our results are divided into two cases. In the first case, we
used a constant value Nκ = 3, and considered separations down to
κ = 0.0002; the results are given in Table 2. Here, all extrapolations,
Ĉ, were obtained by fitting the power law (33) to the f0-values at
N,N/2, N/3. We also present the relative excess E = (C̃ − Cg)/Cg

over the geometric capacitance. Our results are compared with the
Kirchhoff result (39) and with the numerical results in [2, 3].

In the second case, we considered even smaller separations, down
to κ = 0.00001; the results are presented in Table 3. Since limited
computer memory enforced a maximum N = 15000, all extrapolations

Table 2. Numerically calculated capacitances, where f0(N) is the
non-extrapolated value and Ĉ is the extrapolant. The estimated true
capacitance is C = 4ε0aĈ. In columns 2 and 5, only decimals are
presented, since the integers are the same as in column 3. For example,
at κ = 0.01, where Ĉ = 80.43451, one has f0(N) = 80.43440.

Our method with Nκ = 3 References
κ f0(N) Ĉ E� (39) [2] [3]

0.01 .43440 80.43451 24.1 .42044 80.4342 80.43
0.005 .14169 159.14179 13.1 .13354 159.13 159.1
0.002 .98596 394.98607 5.82 .98206 394.87 395
0.001 .85661 787.85672 3.13 .85443 787.6 787
0.0005 .42707 1573.42718 1.67 .42588 1573
0.0002 .84994 3929.85005 0.73 .84944 3928.9
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Table 3. Numerically calculated capacitances, where f0(N) is the
non-extrapolated value and C̃ is the extrapolant. In columns 2 and 5,
only decimals are presented; same integers as in column 3.

Our method with N = 15000 References
κ f0(N) C̃ E � (39) [2]

0.0001 .01294 7857.01378 3.86 .01355 7855.9
0.00005 .16055 15711.16855 2.04 .16847
0.00002 .25402 39273.34241 0.87 .34244
0.00001 .05664 78543.42381 0.46 .42390

10 10 10 10

10

10

10

-5 -4 -3 -2

-4

-3

-2

κ

|C − C  |
~

k 

Figure 3. The magnitude of the difference between our extrapolated
results and the Kirchhoff results from (39), as function of the relative
separation κ. Circles denote positive and dots negative differences.

were obtained with our heuristic method. As starting value, we took
the Ĉ-value obtained at the smallest separation considered in Table 2,
i.e. κ0 = 0.0002, C̃0 = 3929.85005; see Section 4.1.2.

At the largest separation, κ = 0.01, our result agrees better with
the reference numerical results than with (39), but for the smaller
separations our results are more close to (39). In Figure 3, we have
plotted the difference between our results and the Kirchhoff result,
which in effect is our numerical approximation of the rest term in
Equation (39). For 0.0002 ≤ κ ≤ 0.01 the difference is positive
and decreases with κ with the approximate behavior ∝ κ0.8, but
when reaching the smallest κ-values the difference turns negative and
increases in magnitude. This cannot by itself be taken as an error,
since (39) is not the exact solution, neither a lower bound, but a
solution that becomes increasingly accurate as κ decreases.

We should also mention the result by Ignatowsky [15, 2], which
differs from Kirchhoff’s result in that the constant term is replaced
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by (ln 8− 1/2) /4, thereby falling below the Kirchhoff result by the
amount of approximately 0.33447. Pólya and Szegö [16] have shown
that Ignatowsky’s result is a sharp lower bound for the capacitance.
Thus, we see in Table 3 that at κ = 0.00001 our non-extrapolated result
is below this lower bound, which is an indication that convergence has
not been reached due to an insufficient number of expansion functions.
However, the extrapolated result is above the sharp lower bound.

4.3. On the Accuracy of the Results

Our numerical simulations have shown that for a fixed κ the
unextrapolated capacitance f0(N) increases with N , and from Tables 1
and 2 it appears that when using the power law extrapolation
formula (33) the extrapolated value Ĉ decreases with N . If we in
Table 1 use the Ĉ-values at Nκ = 1 as references, the extrapolations
obtained at Nκ = 0.2 overestimate the references with about one third
of the total amount of extrapolation. Similarly, if we in Table 2 use
the Ĉ-values at Nκ = 3 as references, the extrapolations obtained at
Nκ = 1 (in Table 1) overestimate the references with about one third
of the total amount of extrapolation. Applying this rule to the values
in Table 2, we conclude that the true values are approximately 4 ·10−5

below the extrapolated value.
Using the subsequent repeated extrapolation, the error obtained

at κ = 0.0002 is propagated to the lower κ-values. If the extrapolation
scheme was ideal, i.e., if the h-function in (34) was the same
regardless of κ, no further contributions to the error would have
occured. To get a very rough estimate of the cumulated errors, we
can study the similarities between the curves in Figure 2. Given the
excellent agreement between the curves at the smaller κ-values, a gross
estimate is that the cumulated error is within 1/10 of the amount of
extrapolation. Applying this estimate to the values given in Table 3
we obtain the estimate of the maximum error, denoted ∆C, acquired
in each step of the interpolation scheme. The results, rounded upward
to one significant digit, are presented in Table 4. Since we typically
have to let Nκ decrease with κ, the most significant contribution to
the accumulated error at a certain κ-value is acquired in the last step
of the extrapolation scheme.

Table 4. Estimated order of the cumulated error during each step of
the heuristic extrapolation scheme.

κ 0.0002 0.0001 0.00005 0.00002 0.00001
∆C 4 · 10−5 8 · 10−5 8 · 10−4 9 · 10−3 4 · 10−2
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5. CONCLUSIONS

By expanding the kernel in the Love equation into a Fourier cosine
series, with the coefficients expressed analytically in terms of Sine and
Cosine integrals, we have increased the accuracy of the expansion,
making it possible to use considerably larger truncation numbers N
than in previous studies. In this way, we have improved the numerical
values for the capacitance at small plate separations κ.

The present method enable us to consider smaller plate separation
distances than has been considered before, while maintaining a high
accuracy. Numerical tests indicated that the degree of convergence is
determined by the product Nκ. Hence, for this method of calculating
the capacitance it becomes practically impossible to accommodate
for a decreasing plate separation by a corresponding increase of the
number of expansion functions; cf. Figure 2. To compensate for this
problem, we have developed a heuristic extrapolation scheme that uses
the information obtained at intermediate separation.

At larger separations, κ, than those considered in our study,
convergence is obtained for smaller numbers, N , of expansion
functions. In such cases, one does not need to use the analytical results
in Section 3 for the integrals, since they can instead be calculated
accurately by means of numerical methods [3, 2]. In fact, for large κ-
values the explicit expressions in Section 3 are unsuitable for numerical
evaluation. This can be seen by observing that from (4) and (9) it
follows that for any κ > 0 the matrix elements fulfil the relation

|Kmn| ≤ 2K0,0 < 2 (40)

and that when we tested the algorithm for separations 1 ≤ κ ≤
10 we encountered spurious large matrix elements violating the
condition (40). The reason is that when Nκ À 1, the individual terms
in the expressions given in Section 3 exhibit an exponential growth
∝ eNκ and the condition (40) is met by taking the differences between
such very large terms, but numerically this kind of evaluation leads to
cancelation effects.
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