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HIGH FREQUENCY SCATTERING BY AN IMPENE-
TRABLE SPHERE
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Abstract—The high frequency scattering of a scalar plane wave
from an impenetrable sphere with a diameter of several thousand
wavelengths is treated by the Sommerfeld-Watson transformation, the
saddle-point technique (SPT), and the numerical steepest descent
method (NSDM). Both the near and far fields for the sphere are
computed within the observation angle range of 0 to 180 degree. First,
with the aid of the Watson transformation, the fast-convergent residue
series replacing the slow-convergent Mie series is derived. Second,
a new algorithm for finding the zeros of the Hankel functions is
developed. Third, a novel NSDM, which is adaptive to frequency and is
hence frequency independent, is proposed to overcome the breakdown
of the traditional SPT in the transition region. Numerical results
show that when the observation angle is very small, the Mie series
solution of the near-field will not be accurate due to error accumulation.
Furthermore, using the proposed methods, the CPU times for both
the near-field and far-field calculations are frequency independent with
controllable error. This work can be used to benchmark future works
for high-frequency scattering.

1. INTRODUCTION

Mie series solution for scattering from an impenetrable sphere has been
known for a long time [1, 2]. Unfortunately, the Mie series will become
inefficient at high frequencies due to its slow convergence. Hence, a
large number of summation terms must be used to obtain accurate
results for both near-field and far-field analyses. The number of terms
is proportional to ka (where k is the wavenumber and a is the radius of

Corresponding author: W. E. I. Sha (wsha@eee.hku.hk).
† W. C. Chew is on leave of absence from the University of Illinois, Urbana-Champaign,
USA.



292 Sha and Chew

sphere) for plane wave incidence and k2a2 for spherical or cylindrical
wave incidence, which leads to expensive computational cost as the
frequency increases. An effective method for solving the problem is to
make use of Sommerfeld-Watson transformation [3, 4]. It can convert
the slow-convergent Mie series to a fast-convergent residue series.

For Watson transformation, many researchers have done good
work. Nussenzveig gave a complete discussion about the topic and
derived relevant mathematical equations [5]. Rumerman applied the
Sommerfeld-Watson transformation to the scattering of acoustic-waves
obliquely incident upon cylindrical-shells [6]. Kim [7], and Shim and
Kim [8] used the Watson transformation to analyze the scattering of
a coated sphere. Paknys [9], and Paknys and Jackson [10] studied a
variety of asymptotic expansions of Hankel functions and used the
Watson transformation to explain the behaviors of complex waves.
Li and Chew [11] gave a new residue series solution of Watson
transformation. Valagiannopoulos reviewed the theory and further
discussed the initial guess values for the zeros of Hankel functions [12].
Sen and Kuzuoglu used the modified Watson transformation to analyze
the high frequency scattering from a double negative cylinder [13].

However, seldom did papers focus on an accurate and efficient
zero-finding algorithm. In [7, 8], the authors said the zeros could
be found by the Newton-Raphson method but they did not give
any numerical implementations. In [12], the authors employed the
commercial software Mathematica to solve the problem. Furthermore,
the way to efficiently and accurately compute the near-field in the
transition region was seldom reported. In addition, the numerical
results for the scattering by very large spheres could not be found
in the literature.

In this paper, we will address these problems and present the
numerical solution of scattering by an impenetrable sphere with a
diameter of one thousand wavelength. For the completeness of
the paper, mathematical equations and the corresponding physical
interpretations will be reviewed. This work can be used to benchmark
future works in frequency-independent methods [14–16].

2. THEORY

2.1. Watson Transformation

The incident plane wave can be expanded as

Ψi(r, θ) = exp(ikr cos θ) =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ) (1)
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where jl is the spherical Bessel function of order l and Pl(cos θ) is the
l-th order Legendre polynomial. According to the fact

jl(kr) =
1
2

[
h

(2)
l (kr) + h

(1)
l (kr)

]
(2)

the total field in the presence of sphere can be represented as

Ψt(r, θ) = Ψi(r, θ) + Ψs(r, θ)

=
1
2

∞∑

l=0

(2l + 1)il
[
h

(2)
l (ρ) + Sl(B)h(1)

l (ρ)
]
Pl(cos θ) (3)

where the S-function Sl(B) is determined by the boundary condition
Ψt(a, θ) = 0

Sl(B) = −h
(2)
l (B)/h

(1)
l (B) (4)

and we have introduced the notations

ρ = kr, B = ka (5)

Equation (3) is the well-known Mie series solution. Unfortunately, the
Mie series converges slowly and the computational costs are expensive
as the frequency increases.

Using the Watson transformation, a series summation can be
converted into an integral form

∞∑

l=0

f

(
l +

1
2

)
=

1
2

∫

C
f(λ)

exp(−iπλ)
cosπλ

dλ (6)

where C is the contour as shown in Fig. 1. Using (6), the total field
can be rewritten as

Ψt(r, θ) =
∫

C
g(λ,B, ρ)Pλ−1/2(cos θ)e−iλπ/2 λ

cosπλ
dλ (7)

where

g(λ,B, ρ) =
1
2

(
π

2ρ

)1/2

e−iπ/4

[
H

(2)
λ (ρ)− H

(2)
λ (B)

H
(1)
λ (B)

H
(1)
λ (ρ)

]
(8)

For (7) and (8), Pλ−1/2 is the Legendre function of the first kind and
we have employed the relation hl(x) = (π/2x)1/2Hl+1/2(x) between
spherical and cylindrical Hankel functions.

Considering the following properties

P−λ−1/2(cos θ) = Pλ−1/2(cos θ) (9)

H
(1)
−λ(x) = eiπλH

(1)
λ (x) (10)

H
(2)
−λ(x) = e−iπλH

(2)
λ (x) (11)
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Figure 1. The integration paths for Watson transformation.

we find that the integrand of (7) is an odd function of λ. Hence (7)
can be converted to

Ψt(r, θ) =
∫ ∞+iε

−∞+iε
g(λ,B, ρ)Pλ−1/2(cos θ)e−iλπ/2 λ

cosπλ
dλ (12)

where ε is a small positive number and the contour C is changed to
the straight line D above the real axis. Using the identity valid in D

e−iλπ/2

cosπλ
= 2eiλπ/2

∞∑

m=0

(−1)me2imπλ (13)

(12) can be rewritten as

Ψt(r, θ) = 2
∞∑

m=0

(−1)m

∫ ∞+iε

−∞+iε
g(λ,B, ρ)

Pλ−1/2(cos θ) exp [iπλ(2m + 1/2)]λdλ (14)

The above can be shown to be the same as the result in [11]. To
this end, Pλ−1/2(cos θ) can be represented as the summation of the two
Legendre functions of the second kind

Pλ−1/2(cos θ) =
1
π

tan
[(

λ− 1
2

)
π

] [
Qλ−1/2(cos θ)−Q−λ−1/2(cos θ)

]

(15)
We use the following relations

g(−λ,B, ρ) = e−iπλg(λ,B, ρ) (16)

and

tan
[(
−λ− 1

2

)
π

]
= − tan

[(
λ− 1

2

)
π

]
(17)



Progress In Electromagnetics Research, PIER 97, 2009 295

Equation (14) can be rewritten as

Ψt(r, θ) =
2
π

∞∑

m=0

(−1)m

∫ ∞+iε

−∞+iε
g(λ,B, ρ) tan

[(
λ− 1

2

)
π

]

Qλ−1/2(cos θ) exp [iπλ(2m + 1/2)]λdλ

+
2
π

∞∑

m=0

(−1)m

∫ ∞+iε

−∞+iε
g(−λ,B, ρ) tan

[(
−λ− 1

2

)
π

]

Qλ−1/2(cos θ) exp[−iπλ(2m + 1/2)]λdλ

=
2
π

∞∑
m=−∞

(−1)m

∫ ∞+iε

−∞+iε
g(λ,B, ρ) tan

[(
λ− 1

2

)
π

]

Qλ−1/2(cos θ) exp[iπλ(2m + 1/2)]λdλ (18)
We can verify that the Equation (18) has the same form with the
equation “(27)” in [11].

If the contribution from the arc of the large semicircle vanishes
as its radius approaches infinity, the integration path of (14) can be
deformed into the contour Dc + D enclosing the upper half-space with
a large semicircle. As a result, we can express (14) as (19)

Ψt(r, θ) = 2
∞∑

m=0

(−1)m

∮

Dc+D
g(λ,B, ρ)Pλ−1/2(cos θ)

exp[iπλ(2m + 1/2)]λdλ (19)
Using Cauchy’s residue theorem and considering the first term of (8) is
analytic, the contour integral (19) can be deformed as a residue series
summation

Ψt(r, θ) = 2πeiπ/4

(
π

2ρ

)1/2 ∞∑

m=0

(−1)m

·
∞∑

n=1

rn(B)H(1)
λn

(ρ)Pλn−1/2(cos θ) exp[iπλn(2m + 1/2)]λn

= πeiπ/4

(
π

2ρ

)1/2 ∞∑

n=1

rn(B)H(1)
λn

(ρ)Pλn−1/2(cos θ)

exp(−iπλn/2)
cos(πλn)

λn (20)

where we have employed (13) again and

rn(B) =
−H

(2)
λn

(B)
∂H

(1)
λ

∂λ (B)
∣∣∣
λ=λn

(21)
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is the residue terms. Compared with the Mie series solution (3), the
residue series solution (20) converges extremely fast at high frequencies.
Hence, only the first several terms in (20) are required for numerically
accurate solution.

2.2. Computing Zeros of Hankel Functions

Computing the zeros of an analytic function in the complex plane is
a classical problem in applied mathematics. The pioneering work was
done by Delves and Lyness [17]. Kravanja developed the ideas and
used the formal orthogonal polynomials to approximate the zeros in
the interior of a positively oriented Jordan curve [18–20]. Further,
Protopopov proposed a method to locate the zeros of function with
large values of derivatives [21]. Based on their work, we propose a novel
adaptive scheme to accurately compute the zeros of Hankel functions.
Accordingly, the derivative of Hankel functions with respect to the
complex order expressed in (21) also can be obtained.

To compute the residue terms (21), one needs: a) find the zeros of
Hankel function H

(1)
λ (B) in the complex λ-plane. In other words, find

λn subjected to H
(1)
λn

(B) = 0; (b) compute the derivative of the Hankel
function with respect to the complex order λ at λ = λn. Because
all the zeros of Hankel functions are simple (first-order zeros), we
only consider how to compute these simple zeros in a closed positively
oriented Jordan curve.

First, for an analytic function f(z), the number of zeros is
determined by the following contour integration

N =
∮

C

f ′(z)
f(z)

dz (22)

However, in some cases, computing the derivative of the analytic
function f(z) is impossible. For example, computing the derivative
of Hankel functions with respect to order is difficult. If we write
f(z) = rejθ, then ln f(z) = ln r + jθ. Using d

dz [ln f(z)] = f ′(z)
f(z) and

considering the total change in ln r is zero, we can express (22) as

N =
1
2π

∮

C′
d {arg [f(z)]} (23)

where d is the variance of argument (phase angle) of f(z). Considering
the discontinuities of argument, we use the following analytic form for
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computing the variance.

d {arg [f(z)]} = d

{
arctan

[
Imf(z)
Ref(z)

]}

=
1

|f(z)|2 {d [Imf(z)] Ref(z)−Imf(z)d [Ref(z)]}(24)

Using the finite-difference method, we get

d {arg [f(zj)]} =
1

|f(zj)|2
{[Imf(zj+1)− Imf(zj)] Ref(zj)

−Imf(zj) [Ref(zj+1)− Ref(zj)]} (25)

and

N =
1
2π

p∑

j=1

d {arg [f(zj)]} (26)

where the closed Jordan curve is discretized by the point set I = {j|j =
1, 2, . . . , p} along the anticlockwise orientation.

Next, using the adaptive quadtree decomposition, the closed
curve, such as a closed rectangle, can be divided into the smaller closed
sub-curves until each sub-curve cj has a simple pole or no pole. As a
result, the analytic function can be expressed as

f(z) = P (z)
s∏

j=1

(z − ζj)Nj (27)

where s is the number of sub-curves, Nj = 0, 1, and
∑s

j=1 Nj = N .
There is no zero in the sub-curve if Nj = 0.

Finally, the location of the simple zero can be found by computing
the contour integrations

1
2πi

∮

cj

1
f(z)

= 1/f ′(ζj) (28)

1
2πi

∮

cj

z

f(z)
= ζj/f ′(ζj) (29)

where ζj is the simple zero within the closed sub-curve cj . On one hand,
according to (28), we can get the derivatives of Hankel functions with
respect to the complex order. On the other hand, we also can calculate
the locations of zeros ζj by using both (28) and (29). Moreover,
Gaussian quadrature or adaptive Simpson quadrature [22] is employed
to calculate the contour integration. The Hankel function is evaluated
by the uniform asymptotic expansion (A-2).
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2.3. Near Field

Given the z-directed scalar plane wave, the total field of the
impenetrable sphere shows different wave behaviors in the shadow,
transition, and lit regions as shown in Fig. 2. The mathematical
equations and the corresponding physical meanings will be reviewed.
In particular, we will discuss the way to compute the total field
numerically. The near field condition is B < ρ ¿ B4/3.

2.3.1. Shadow Region

For the shadow region (0 ≤ θ < θ0, θ0 = arcsin(a/r)), the total
field representation (20) is calculated by using the uniform asymptotic
expansion (A-2) and (A-7). The residue term (21) is calculated by
(A-2) and the zero-finding algorithm proposed in Section 2.2. The
poles λn in (21) correspond to well known “creeping wave modes” or
“Watson modes”.

In addition, using (A-4) and (A-8), (20) can be approximated as

Ψt(r, θ)≈ (2π)1/2

(
a2

r2 − a2

)1/4 exp
[
ik(r2 − a2)1/2

]

(kr sin θ)1/2
·

∞∑

m=0

(−1)m
∞∑

n=1

rn(B)
[
exp

(
iλnγm+i

π

4

)
+exp

(
iλnδm−i

π

4

)]
(30)

where

γm = θ0 − θ + 2mπ (31)
δm = θ0 + θ + 2mπ (32)

Figure 2. The shadow, transition, and lit regions for the z-directed
incident plane wave. The inner circle and the outer circle denote R = a
and R = r, respectively.
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Figure 3. Diffraction rays T1T
′
1P and T2T

′
2P reaching a point P in

the shadow region.

and θ0 = arcsin(a/r). For (30), it corresponds to the creeping wave
traveling along the surface of the sphere and encircling it m times
before leaving the surface. The creeping wave travels along the surface
with phase velocity slightly smaller than that in free space, due to
the delay in overcoming the curvature of the sphere. In particular,
the creeping wave experiences a high attenuation rate due to radiation
loss. So the leading term (m = 0) will make significant contribution.
Fig. 3 shows the case. A point P in the shadow region is reached by
two rays T1T

′
1P and T2T

′
2P . The T ′1P and T ′2P are the tangents to the

sphere. In fact, the two rays are also the diffracted rays in geometrical
theory of diffraction.

2.3.2. Lit Region

For the lit region (π/2 ≤ θ ≤ π), the creeping-wave-related terms of
m ≥ 1 in (14) are exponentially small. So we only consider the term
of m = 0 and the total field can be approximated as

Ψt(r, θ) ≈ Ψ(0)
t (r, θ) = 2

∫ ∞+iε

−∞+iε
g(λ,B, ρ)Pλ−1/2(cos θ) exp(iλπ/2)λdλ

(33)
Let us make the splitting

Pλ−1/2(cos θ) = Q
(1)
λ−1/2(cos θ) + Q

(2)
λ−1/2(cos θ) (34)

and the terms of γ0 and δ0 in (30) arise from Q
(1)
λ−1/2 and Q

(2)
λ−1/2,

respectively. The term including Q
(2)
λ−1/2 remains rapidly convergent
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in the lit region. However, the Q
(1)
λ−1/2 term increases exponentially

and relates to the incident and reflected waves in geometrical optics.
As a result, the representation of the total-field (20) by the Watson
transformation will break down.

In the lit region, the total field can be represented as the
summation of the incident wave and the reflected wave, i.e.,

Ψ(0)
t (r, θ) = Ψi + Ψr (35)

where Ψi is the incident wave and Ψr is the reflected wave, which can
be expressed as

Ψr = −
(

π

2ρ

)1/2

e−iπ/4

∫

Γ

H
(2)
λ (B)

H
(1)
λ (B)

H
(1)
λ (ρ)

Q
(1)
λ−1/2(cos θ)eiλπ/2λdλ, π/2 ≤ θ ≤ π (36)

where the integration path is shown in Fig. 4. Using the asymptotic
expansions (A-4) and (A-12) and using the saddle-point technique
(SPT), the integral has a single saddle point on the real axis at
λ̄ = ρ sin w̄ = kp, where p = r sin w̄ = a cos(θ−w̄

2 ). The physical
interpretation is shown in Fig. 5. The incident ray that reaches
the observation P is reflected at the surface according to the law of
geometrical optics. The angle

ξ =
1
2
(θ − w̄) (37)

Figure 4. The integration path for the reflected wave in the lit region.
The λ̄ = ρ sin w̄ is the saddle point.



Progress In Electromagnetics Research, PIER 97, 2009 301

Figure 5. The physical interpretation of the saddle point in the lit
region: p is the distance from the origin O to the reflected ray BP .

is the complement of the incident angle. As a result, it can be found
that [5]

Ψr=−
[

a2 sin 2ξ

4s(s sin 2ξ + a cos3 ξ)

]1/2

exp
[
ik

(
s− 3

2
a sin ξ

)]
·

{
1 +

i

2B

[
1

sin3 ξ
+

1
24 sin2 ξ cos2 ξ

a

s
+

3
25

(
2

sin ξ
− 5 sin ξ

) (a

s

)2

− 15
26

cos2ξ
(a

s

)3
− 1

23 sin ξ cos ξ
· a

(s sin 2ξ+a cos3 ξ)

]
+O(k−2)

}
(38)

where s = r cos w̄ − a
2 sin ξ. The first term of (38) represents the

reflected wave according to geometrical optics. The second term of (38)
represents the correction to geometrical optics corresponding to the
second-order WKB approximation.

2.3.3. Transition Region

For the transition region (θ0 ≤ θ < π/2), we deform the integral path
of the Equation (14) into the path Γ′ as shown in Fig. 6. The integral
containing H

(2)
λ (ρ) will vanish, since the contour may be closed at

infinity and the integrand has no singularity within it [5]. Finally, we
get

Ψ(0)
t = −

(
π

2ρ

)1/2

e−iπ/4

∫

Γ′

H
(2)
λ (B)

H
(1)
λ (B)

H
(1)
λ (ρ)

Q
(1)
λ−1/2(cos θ)eiλπ/2λdλ, θ < π/2 (39)
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Figure 6. The integration path Γ′ goes through the saddle points
λ̄ = ρ sin w̄ and λ̄ = ρ sin θ (transition region). The dashed lines leaving
the real λ axis at the angles of ±π/3 denote the Stokes lines of the
Hankel functions H

(1,2)
λ (B).

It is noted that the integrand of (39) has the same form with that
of (36). However, their integration paths are different. The integration
path Γ′ goes through the two different saddle points. The left one
makes a contribution to the reflected wave Ψr and is the same as the
saddle point in Fig. 4. The right one makes a contribution to the
incident wave Ψi. At the left of the Stokes lines shown in Fig. 6, we
have

H
(2)
λ (B)

H
(1)
λ (B)

∼ exp
{
−2i

[
(B2 − λ2)1/2 − λ cos−1

(
λ

B

)
− π

4

]}
= exp(Φ1)

(40)
where

Φ1 = −2i

[
(B2 − λ2)1/2 − λ cos−1

(
λ

B

)
− π

4

]
(41)

The SDP of Ψ(0)
t is the same as that in the lit region (Fig. 4). However,

the SDP cannot be extended to infinity at the lower half-plane, because
the integral does not converge [5]. At the right of the Stokes lines, we
have

H
(2)
λ (B)

H
(1)
λ (B)

≈ −1. (42)

The relevant SDP leaves the real λ axis at the angle of π/4. To
better understand how the saddle points evolve, the contour plot of the
integrand for (36) or (39) is shown in Fig. 7. We find the saddle point
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Figure 7. The contour of the integrand: B = 10π. The left stars
denote the saddle-points corresponding to the reflected waves, and the
right triangle denotes the saddle-point corresponding to the incident
wave. The dashed lines denote the Stokes lines of Hankel functions.

corresponding to the incident wave disappears when the observation
angle θ > π/2. This is the reason why the integration path of the
transition region is different from that of the lit region. This is also the
reason why (39) represents the total-field; however, (36) represents the
reflected field. In addition, the reflected-field solution in the transition
region is just the continuation of that in the lit region.

However, as the observation angle θ approaches θ0 the shadow
boundary, three things will happen: (1) the two saddle points approach
each other, moving towards the point λ = B; (2) the reflected ray
and the incident ray meet at the same line called focal line; (3) the
Debye asymptotic expansions (A-4) are not available for H

(1)
λ (B) and

H
(2)
λ (B). As a result, the expression of reflected wave (38) will diverge,

as is the case for geometrical optics approximation.
In the neighborhood of the shadow boundary, the main

contribution to the integral arises from the neighborhood of λ = B.
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Thus, we can split the integral into the following form [5]

Ψ(0)
t = −

(
π

2ρ

)1/2

e−iπ/4

[∫ B

σ1∞

H
(2)
λ (B)

H
(1)
λ (B)

H
(1)
λ (ρ)Q(1)

λ−1/2(cos θ)eiλπ/2λdλ

+
∫ σ2∞

B

(
1 +

H
(2)
λ (B)

H
(1)
λ (B)

)
H

(1)
λ (ρ)Q(1)

λ−1/2(cos θ)eiλπ/2λdλ

−
∫ σ2∞

B
H

(1)
λ (ρ)Q(1)

λ−1/2(cos θ)eiλπ/2λdλ

]

= −
(

π

2ρ

)1/2

e−iπ/4
(
Ψta + Ψtb + Ψtc

)
(43)

where

Ψta =
∫ B

σ1∞

H
(2)
λ (B)

H
(1)
λ (B)

H
(1)
λ (ρ)Q(1)

λ−1/2(cos θ)eiλπ/2λdλ (44)

Ψtb =
∫ σ2∞

B

(
1 +

H
(2)
λ (B)

H
(1)
λ (B)

)
H

(1)
λ (ρ)Q(1)

λ−1/2(cos θ)eiλπ/2λdλ (45)

Ψtc = −
∫ σ2∞

B
H

(1)
λ (ρ)Q(1)

λ−1/2(cos θ)eiλπ/2λdλ (46)

Using the numerical steepest descent method (NSDM), one can treat
the above integral term by term. To solve the oscillatory integral,
Huybrechs used the NSDM [23, 24] by using the change of variable
t = g(λ), i.e.,∫

f(λ)e−g(λ)dλ =
∫

f
(
g−1(t)

) 1
g′ (g−1(t))

e−tdt (47)

To evaluate the oscillatory integral, one needs: (1) solve g(λ) = t
for λ = g−1(t); (2) treat the singularity of 1

g′(g−1(t))
. For example, if

g(λ) = λ2, the singularity of 1√
t

will be introduced. So a generalized
Gauss-Laguerre integral method must be adopted. For the large sphere
problem, g(λ) is very complex, and therefore we developed a novel
NSDM to evaluate the integral (43).

For Ψtc, we use (A-4) and (A-12) to find its steepest descent path
(SDP). Making the change of variable

λ = ρ sinw (48)

and the phase factor of the integrand of Ψtc is given by

exp [iρα(w, θ)] = exp (iρ [cosw + (w − θ) sinw]) (49)
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According to (49), the saddle point is located at w̄ = θ and is the same
as the right saddle point in Fig. 6. Using the second-order Taylor
expansion, we get

α(w, θ) = cos θ + cos θ
(w − θ)2

2
(50)

The corresponding SDP crosses the real w axis at an angle of π/4, i.e.,

w = θ + κ1e
iπ/4 (51)

The upper integration interval for κ1 can be set as κ1 ∈
[
0,

√
C1

ρ cos θ

]

and the constant C1 ≈ 14 is evaluated by the numerical experiment.
However, the lower integration interval cannot be set as κ1 ∈[

−
√

C1
ρ cos θ , 0

]
directly. Because the integral contribution from λ = B

or w = θ0 cannot be ignored. When θ approaches θ0, the contribution
is significant. To locally approximate the SDP around θ0, the first-
order Taylor expansion is used as follows

α(w, θ) = α(θ0, θ)− (θ − θ0) cos θ0(w − θ0), w ≈ θ0 (52)

The “local” SDP in the neighborhood of w = θ0 can be written as

w = θ0 + κ2e
i3π/2 (53)

and the integration interval seems to be taken as κ2 ∈
[
0, C2

ρ cos θ0(θ−θ0)

]
.

Unfortunately, when θ → θ0, the upper limit of the interval will
approach infinity. In other words, the integrand cannot be damped
to a very small value as we have expected. Fig. 8 gives the complete
integration paths for Ψtc. It can be seen clearly the distances |θ0− θm|
and |θm − θ| will become very small when θ ≈ θ0. So the integration
interval of κ2 can be revised as

κ2 ∈ [0, Λ2], Λ2 = min
{

C2

ρ cos θ0(θ − θ0)
, θ − θ0

}
(54)

where C2 ≈ 5.5. Similarly, the integration interval of κ1 can be revised
as

κ1 ∈
[
Λ1,

√
C1

ρ cos θ

]
, Λ1 = max

{
−

√
C1

ρ cos θ
, −θ − θ0

cos π
4

}
(55)

When θ À θ0, the integration interval of κ1 is
[
−

√
C1

ρ cos θ ,
√

C1
ρ cos θ

]
and

will become very small if the frequency is very high. The frequency-
adaptive settings will make it possible that the integration may be
evaluated numerically by the Gauss-Legendre method [22] with a
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(a)

(b)

Figure 8. The integration paths of Ψtc: (a) θ ≈ θ0; (b) θ À θ0.

cost independent of frequency. By (A-4) and (A-12), we find the
approximated SDPs and set the integration intervals, but the integrand
of Ψtc should be numerically evaluated by the uniform asymptotic
expansions (A-2) and (A-11).

When the observation angle is near to θ0 (θ0 ≤ θ ≤ (θ0 +2A)), we
use the Fock transform [25] to find the SDPs of Ψta and Ψtb. According
to (A-5), in the neighborhood of λ = B, we have

H
(2)
λ (B)

H
(1)
λ (B)

∼ Ai
(
xe−2iπ/3

)

Ai
(
xe2iπ/3

) e2iπ/3 (λ < B, |λ−B| . B1/3) (56)

1+
H

(2)
λ (B)

H
(1)
λ (B)

=
2Jλ(B)

H
(1)
λ (B)

∼ Ai (x)
Ai

(
xe2iπ/3

)eiπ/3 (λ > B, |λ−B| . B1/3)

(57)
where

x = A(λ−B), A =
(

2
B

)1/3

(58)

According to the asymptotic expansion of the Airy function (A-1), we
know that the SDPs of Ψta and Ψtb leave the real x axis at the angles



Progress In Electromagnetics Research, PIER 97, 2009 307

of 2π/3 and 0 respectively.

λ = B +
x̃

A
e2iπ/3, x̃ = xe−2iπ/3 (59)

λ = B +
x̃

A
, x̃ = x (60)

Along their SDPs, (56) and (57) are exponentially damped as the
form exp

(−4
3 x̃3/2

)
. Thus we can integrate Ψta and Ψtb along their

relevant SDPs with the approximate integration intervals x̃ ∈ [0, 8]
and x̃ ∈ [0, 3.5], respectively.

When the observation angle moves away from θ0 (θ > (θ0 + 2A)),
Ψtb decreases exponentially but it is not the case for Ψta. Because
Q

(1)
λ−1/2 will increase exponentially along the original SDP of Ψta leaving

the real x axis at the angle of 2π/3. According to (56), (A-1), and (59),
the integrand of Ψta is dominated by the factor

exp

(
−4

3
x̃3/2 +

√
3

2
θ

A
x̃

)
exp

(
i

θ

2A
x̃

)
= exp(Φ2) exp(Φ3) (61)

where

Φ2 = −4
3
x̃3/2 +

√
3

2
θ

A
x̃ (62)

Φ3 = i
θ

2A
x̃ (63)

Considering x̃ is real, the integrand oscillates as ∼ exp
(
i θ
A x̃

)
. Letting

∂Φ2/∂x̃ = 0, we know that the integrand has the peak x̃ ≈ (θ/A)2.
The similar phenomenon was also found for far-field computation [26].
According to our numerical experiment, we need to change the SDP
when θ > (θ0 + 2A).

To find the revised SDP of Ψta, we use the Debye expansion (A-4)
to approximate H

(1)
λ (ρ) and use (A-12) to approximate Q

(1)
λ−1/2(cos θ),

which are the same as those for the lit region. However, the two
saddle points are still close to the point (B, 0), the Fock transform
approximations must be used for H

(2)
λ (B) and H

(1)
λ (B), i.e.,

H
(2)
λ (B)

H
(1)
λ (B)

∼ exp
(

π

2
i− 4

3
x̃3/2

)
= exp(Φ4) (64)

where
Φ4 =

π

2
i− 4

3
x̃3/2 (65)
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From the above analysis, we need only to compare the phase Φ4 with
the phase Φ1 in (41) to observe the differences in the transition region
and the lit region. For the lit region, according to (40), we get

∂Φ1

∂λ
= 2i arccos

(
λ

B

)
≈ iπ

(
1− λ

B

)1/2

(66)

For the transition region and when θ > (θ0 + 2A), we get

∂Φ4

∂λ
= i23/2

(
1− λ

B

)1/2

(67)

The above, together with the derivation of the remaining phases in the
integrand, determines the location of the saddle point. In view of the
fact that 23/2 ≈ π, hence the location of the saddle point for Ψta is
almost same as shown in Fig. 4 or shown in Fig. 6 (left one). We also
have

∂2Φ1

∂λ2
=

−2i

(B + λ)1/2(B − λ)1/2
(68)

and
∂2Φ4

∂λ2
=

−√2i

B1/2(B − λ)1/2
(69)

The above, together with the derivation of the remaining phases, when
evaluated at λ = λ̄, determines the direction of the SDP. If λ̄ ≈ B,
(68) and (69) are still comparable.

According to the above analysis, we can deform the integration
path as shown in Fig. 9. Obviously, the integration path will pass
through the end point x = 0 and the saddle point x̄ = A(λ̄ − B),
where λ̄ is the left saddle point in Fig. 6 or the saddle point in Fig. 4.
Using the tricks similar to (54) and (55), the integration intervals for
the saddle point and the end point are, respectively,

x ∈
[
max

{
−C3,− C4

cos (π/4)

}
, C3

]
e3iπ/4 (70)

and
x ∈ [0, min {C4, C5}] e3iπ/2 (71)

where C3 ≈ 3.8(θ/A)1/2, C4 = |x̄|, and C5 ≈ 1.9(θ/A)1/2. As the
frequency increases, the integration intervals will be slightly extended
for a fixed observation angle. Fortunately, the available range of the
lit region solution (38) will be extended to the smaller angles also. So,
we need not increase the number of integration nodes as the frequency
increases.



Progress In Electromagnetics Research, PIER 97, 2009 309

Figure 9. The integration paths of Ψta. When the observation angle
θ0 ≤ θ ≤ (θ0 + 2A), the path (dotted) leaves the real axis at the
angle of 2π/3 and goes to the end point x = 0. When the observation
angle θ > (θ0 + 2A), the revised path path (solid) goes through the
left saddle point related to the reflected wave and the end point x = 0.
For the numerical implementation, we integrate Ψta along the opposite
direction and reverse the sign of the summation.

2.4. Far Field

For r →∞, we have

Ψt(r, θ) = eikz + fs(k, θ)
eikr

r
(72)

where fs(k, θ) is the scattering amplitude.
From Fig. 5, the angle w̄ will approach zero as r → ∞, so that

ξ → θ/2 in (37) and the saddle point approaches λ̄ = kp = B cos(θ/2).
As a result, the reflected ray travels along θ direction. Using the
large argument expansion of the Hankel function (A-6) and (36), the
scattering amplitude can be approximated as

fs(k, θ) ≈ fr(k, θ) =
i

k

∫

Γ

H
(2)
λ (B)

H
(1)
λ (B)

Q
(1)
λ−1/2(cos θ)λdλ, θ À 0 (73)

where fr is the reflection amplitude. The integration path Γ, which
is parallel to the integration path in Fig. 4, crosses the real axis at
the saddle point λ̄ = B cos(θ/2) with an angle of −π/4. Using the
asymptotic expansions (A-4) and (A-12) and using the SPT, we can
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get [26]

fr(k, θ) = −a

2
exp

(
−2iB sin

θ

2

)(
1 +

i

2B sin3 θ
2

+
2 + 3 cos2 θ

2(
2B sin3 θ

2

)2 + O

[(
2B sin3 θ

2

)−3
])

(74)

The expression agrees with the well-known conclusion in electromag-
netics and optics that the backward radar cross section (RCS) of the
large sphere is about πa2. Recall that the solution (38) will diverge
when the observation angle θ → θ0 the shadow boundary. Likewise,
(74) will break down when θ → θ0 = 0. Additionally, the contribution
from creeping wave cannot be ignored when θ approaches 0.

Hence, an alternative integral representation should be used. Let
us start by the partial-wave expansion of fs(k, θ) obtainable from (3),
the Mie series solution by letting ρ →∞

fs(k, θ) =
∞∑

l=0

2l + 1
2ik

[Sl(k)− 1]Pl(cos θ) (75)

where Sl is given by (4). According to the Poisson’s summation formula
∞∑

l=0

f

(
l +

1
2

)
=

∞∑
m=−∞

(−1)m

∫ ∞

0
f(λ)e2imπλdλ (76)

(75) can be represented as

fs(k, θ)=
i

k

∞∑
m=−∞

(−1)m

∫ ∞

0
[1−S(λ, k)]Pλ−1/2(cos θ)e2imπλλdλ (77)

where S(λ, k) = −H
(2)
λ (B)/H

(1)
λ (B). In view of the fact

S(−λ, k) = e2iπλS(λ, k) (78)

we make λ → −λ in the sum from m = −1 to −∞ and get

fs(k, θ) =
i

k

∞∑

m=0

(−1)m

{∫ 0

−∞

[
e2iπλ−S(λ, k)

]
Pλ−1/2(cos θ)e2imπλλdλ

+
∫ ∞

0
[1− S(λ, k)]Pλ−1/2(cos θ)e2imπλλdλ

}
(79)

Because the integrand of the first integral in (79) goes to zero
exponentially for |λ| → ∞ in the second quadrant, we may shift
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the path of integration to the positive imaginary axis, from i∞ to
0. Writing

e2iπλ − S(λ, k) = e2iπλ − 1 + 1− S(λ, k) (80)
(79) can be simplified as

fs(k, θ) =
i

k

∞∑

m=0

(−1)m

∫ 0

i∞

[
e2iπλ − 1

]
Pλ−1/2(cos θ)e2imπλλdλ

+
i

k

∫ ∞

0
[1− S(λ, k)]Pλ−1/2(cos θ)λdλ

+
i

k

∫ 0

i∞
[1− S(λ, k)]Pλ−1/2(cos θ)λdλ

+
i

k

∞∑

m=1

(−1)m

∫

C
[1−S(λ, k)]Pλ−1/2(cos θ)e2imπλλdλ(81)

where C is the path going from i∞ to 0 and from 0 to∞. The last term
of (81) corresponds to the high-order Watson modes (m ≥ 1) which are
exponentially small in the high frequency limit. The creeping waves
corresponding to m = 0 have been considered in the first three terms.

Next, we ignore the last term in (81) and employ the identity
∞∑

m=1

(−1)m
(
e2iπλ − 1

)
e2imλπ = e2iπλ

(
2

1 + e2iπλ
− 1

)
(82)

Then we get

fs(k, θ) ≈ i

k

∫ ∞

0
[1− S(λ, k)]Pλ−1/2(cos θ)λdλ

− i

k

∫ 0

i∞
S(λ, k)Pλ−1/2(cos θ)λdλ

+
2i

k

∫ 0

i∞

e2iπλ

1 + e2iπλ
Pλ−1/2(cos θ)λdλ (83)

Using the similar split method in (43), the scattering amplitude fs can
be represented as [26]

fs(k, θ) ≈ fsa + fsb + fsc (84)
where

fsa + fsb =
i

k

(∫ 0

i∞
+

∫ B

0

)
H

(2)
λ (B)

H
(1)
λ (B)

Pλ−1/2(cos θ)λdλ

+
i

k

∫ ∞

B

(
1 +

H
(2)
λ (B)

H
(1)
λ (B)

)
Pλ−1/2(cos θ)λdλ (85)
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and

fsc =
i

k

∫ B

0
Pλ−1/2(cos θ)λdλ+

2i

k

∫ 0

i∞

e2iπλ

1 + e2iπλ
Pλ−1/2(cos θ)λdλ (86)

For fsc, we can use the analytical method to evaluate its value [26].
When the observation angle 0 ≤ θ ≤ 2A, we use the same Fock
transforms (56) and (57) as those for the near-field calculations. Hence
the SDPs of fsa and fsb, which are the same as those of Ψta and Ψtb,
leave the real x axis at the angles of 2π/3 and 0, respectively. Notice
from (58) that A becomes increasingly small at higher frequencies.

However, when the observation angle θ > 2A, the SDP of fsa

should be changed. The integral fsa can be split as

fsa = f (1)
sa + f (2)

sa =
i

k

∫ B

i∞

H
(2)
λ (B)

H
(1)
λ (B)

Q
(1)
λ−1/2(cos θ)λdλ

+
i

k

∫ B

i∞

H
(2)
λ (B)

H
(1)
λ (B)

Q
(2)
λ−1/2(cos θ)λdλ (87)

For f
(2)
sa , the term Q

(2)
λ−1/2 will decrease exponentially along the original

SDP leaving the real x axis at the angle of 2π/3. For f
(1)
sa , the term

Q
(1)
λ−1/2 will increase exponentially. According to (66), (67), (68), and

(69), we have verified that the Fock transform and the Debye expansion
for H

(2)
λ (B)/H

(1)
λ (B) are comparable. In addition, the integrand of f

(1)
sa

is the same as that of fr(k, θ) in (73), whose SDP crosses the real axis
at the saddle point λ̄ = B cos(θ/2) with an angle of −π/4. Hence, the
integration path of f

(1)
sa is changed as shown in Fig. 9 when θ > 2A.

The mathematical models and the numerical methods for fsa and fsb

are almost same as those for Ψta and Ψtb.

2.5. Mie Series

For the Mie series solutions, we can use the recurrence equations [27] to
accelerate the calculations of Hankel functions and Legendre functions.

H
(1,2)
l+1 (z) = −H

(1,2)
l−1 (z) +

2l

z
H

(1,2)
l (z) (88)

Pl+1(z) =
1

l + 1

[
(2l + 1)zPl(z)− lPl−1(z)

]
(89)

The number of the summation terms for the near-field and the far-
field computations are, respectively, ln = ρ + C6ρ

1/3 + C7 and lf =
B + C6B

1/3 + C7. According to [28], C6 ≈ 4 and C7 ≈ 2. Considering
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the Hankel functions H
(1,2)
l (B) will diverge when l > lf , we use the

following approximation for the near-field computation

H
(2)
l (B)

H
(1)
l (B)

≈ −1, l > B + C6B
1/3 + C7 (90)

3. NUMERICAL RESULTS

3.1. Near Field

We assume that k = 2π, a = 500, and r = 2a. As a result, θ0 = 30◦.
The searching domain for locating the zeros of Hankel function is
taken as Reλ ∈ [B, B + CnB1/3] and Imλ ∈ [1, CnB1/3], where the
constant Cn is almost equal to the number of zeros. Here, Cn is
taken as 8. If Cn is not too large, within the searching domain, the
Hankel function can be approximated by the Airy function through
the Fock transform (56)–(58). Although the searching domain will
be extended as the frequency increases, the oscillations of the Hankel
function are unchanged. Hence, the discretization points need not be
increased for the difference implementation (25) and the integration
implementations (28)–(29). Fig. 10 shows the locations of the first
eight zeros of H

(1)
λ (B), where the zeros λn are located at the Stokes

line of H
(1)
λ (B) with the approximated slope angle π/3. According

to (30), the wavenumber of the creeping wave modes is kc = λn/a.
From Fig. 10, we can see Re(λn/a) = k′c > k = B/a and therefore the
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Figure 10. The locations of the first eight zeros of H
(1)
λ (B): a = 500

and k = 2π.
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Figure 11. The total field in the shadow region: a = 500 and r = 2a.
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Figure 12. The total field in the shadow region: a = 62.5 and r = 2a.

phase velocity of the creeping waves is smaller than that in free space.
The attenuation rate of the creeping waves depends on k′′c = Im(λn/a)
and will increase for the high-order creeping wave modes. Fig. 11
shows the solution by the Watson transform. It is noted that when
the observation angle approaches 0, the amplitude of the total field
is very small due to the fact the scattered field and the incident field
have comparable amplitudes but with opposite signs. Because the
number of the summation terms for the Mie series is large and the
recurrence equations (88)–(89) are used, the error may be accumulated.
We change the radius of the sphere as a = 250/n, n = 1, 2, 4, and keep
r = 2a. The near field results by the Watson transform and the Mie
series are given in Fig. 12, Fig. 13, and Fig. 14. As the radius increases,
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Figure 13. The total field in the shadow region: a = 125 and r = 2a.
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Figure 14. The total field in the shadow region: a = 250 and r = 2a.

the solutions by the Mie series introduce the random noises for the
small observation angles.

Figure 15 shows the transition region solution by the NSDM. The
solution is accurate between 20◦ to 65◦. Compared with the analytical
solution by the Fock transform [5], the accuracy of NSDM is better.
Fig. 16 shows the lit region solution by the analytical SPT. The solution
is accurate between 55◦ to 180◦. From the figures, it can be seen
the NSDM solution by the uniform asymptotic expansion successfully
bridges the gap between the lit region solution and the shadow region
solution.

The total CPU time by the sum of Watson transform, the NSDM,
and the SPT for the near field calculation is given in Fig. 17. The error
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Figure 15. The total field in the transition region: a = 500 and
r = 2a. NSDM denotes the numerical steepest descent method, and
Fock denotes the analytical Fock transform method [5].
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Figure 16. The total field in the lit region: a = 500 and r = 2a. SPT
denotes the saddle-point technique.

of the Mie series solution for near-field hardly can be controlled, hence
the error comparison is meaningless.

3.2. Far Field

We assume that a = 500 and k = 2π. Fig. 18 shows the forward
region solution by the NSDM. The solution is accurate between 0◦ to
50◦. Fig. 19 compares our solution with the original solution proposed
in [26]. The number of the integration nodes is uniform for the two
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Figure 17. The total CPU time for the near field calculation: a = 500
and r = 2a. The shadow, transition, and lit regions use respectively
the Watson transform, the numerical steepest descent method, and the
saddle-point technique.
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Figure 18. The forward region solution of the scattering amplitude
for far-field: a = 500. The numerical steepest descent method (NSDM)
is adopted.

solutions. The original integration path proposed in [26] goes along
the real x axis from x = 0 to x = x̄ and the integrand will become
very oscillatory as the observation angle increases. Fig. 20 shows the
backward region solution by the SPT. The solution is accurate between
40◦ to 180◦. Hence, the NSDM solution and the SPT solution can
overlap with each other. Fig. 21 shows the total CPU time for the far-
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Figure 20. The backward region solution of the scattering amplitude
for far-field: a = 500. The saddle-point technique (SPT) is adopted.

field calculation as a function of the electrical size of the radius. Here,
we did not add any integration nodes. Fig. 22 shows the polar plot
of the bistatic RCS for the impenetrable sphere. From the figure, as
the electrical size of the sphere increases, the forward region becomes
very smaller and the RCS result gets more oscillatory. Because the
analytical SPT for the backward region is faster than the NSDM for the
forward region, the total CPU time slightly decreases. Fig. 23 shows



Progress In Electromagnetics Research, PIER 97, 2009 319

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

Radius/Wavelength

C
P

U
 T

im
e

 (
s

)

 

 

NSDM+SPT

Mie Series

Figure 21. The total CPU time for the far-field calculation. The
numerical steepest descent method (NSDM) and the saddle-point
technique (SPT) are used respectively for the forward region and the
backward region.
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Figure 22. The bistatic RCS of the impenetrable sphere.

the relative two-norm error. The scattering amplitude is large, hence
the accuracy of the Mie series solution can be controlled. We compare
our solution with the Mie series solution, and the error decreases as
the frequency increases.
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Figure 23. The relative two-norm error for the far-field calculation.
The Mie series solution is used as reference solution. The numerical
steepest descent method (NSDM) and the saddle-point technique
(SPT) are used respectively for the forward region and the backward
region.

4. CONCLUSION

The high frequency scattering of a scalar plane wave from a very large
impenetrable sphere is computed.

For the near-field calculation, the Watson transformation, the
numerical steepest descent method, and the saddle-point technique
are adopted for the shadow, transition, and lit regions. The numerical
steepest descent method solution bridges the gap between the Watson
transformation solution and the saddle-point technique solution. The
zeros of Hankel functions can be effectively and accurately found by
the numerical difference and integration methods. The total CPU time
is frequency independent. In particular, the Mie series solution is not
accurate for the near-field calculation due to the error accumulation.

For the far field calculation, the numerical steepest descent
method and the saddle-point technique are adopted for the forward
and backward regions. The two solution can overlap with each other.
The total CPU time is frequency independent and the numerical error
can be controlled compared with the Mie series solution.

APPENDIX A. THE ASYMPTOTIC EXPANSIONS FOR
SPECIAL FUNCTIONS

In this appendix, we will review the asymptotic expansions for special
functions [5, 9, 26, 27, 29].



Progress In Electromagnetics Research, PIER 97, 2009 321

The asymptotic expansion of the Airy function is

Ai(z) ∼ exp
(−2

3z3/2
)

2
√

πz1/4
, |z| À 1 |arg(z)| < π (A-1)

The uniform asymptotic expansion of the Hankel function is given
by

H
(1)
λ (λz) ∼ 2e−πi/3

(
4ξ

1− z2

)1/4
{

Ai
(
e2πi/3λ2/3ξ

)

λ1/3
+

e2πi/3Ai′
(
e2πi/3λ2/3ξ

)

λ5/3

[
−ξ−1/2

1∑

s=0

Vsξ
−3s/2U1−s

((
1−z2

)−1/2
)]}

(A-2)

where V0 = 1, V1 = 5/48, U0(t) = 1, U1(t) = (3t − 5t3)/24,
and Ai and Ai′ are the Airy function and its derivative, which can
be numerically evaluated well. The expansion for H

(2)
λ (λz) can be

obtained by changing the sign of i in (A-2). Here, we use the first
two terms to obtain more accurate numerical results, which is different
from [9] employing only the leading term. In (A-2), the important
parameter ξ should be treated carefully and the branch is chosen so
that ξ is real when z is positive, i.e.,

2
3
ξ3/2 = ln

(
1 +

√
1− z2

z

)
−

√
1− z2, |z| ≤ 1

2
3
(−ξ)3/2 =

√
z2 − 1− arccos

(
1
z

)
, |z| > 1

(A-3)

In addition, all the complex multiple-valued functions in (A-2) and
(A-3) are uniquely determined by their principal values. The Debye
expansions for the Hankel functions are given by

H
(1,2)
λ (ρ)∼(2/π)1/2(ρ2−λ2

)−1/4 ·
[
1∓ i

8 (ρ2−λ2)1/2

(
1 +

5
3

λ2

ρ2−λ2

)]

× exp
{
±i

[(
ρ2 − λ2

)1/2 − λ cos−1 λ

ρ
− π

4

]}
,

−ρ < λ < ρ, |λ− ρ| > |λ|1/3 (A-4)
The Debye expansions are not available when |λ − ρ| becomes
comparable with |λ|1/3. Hence we must employ the following
expansions

H
(1,2)
λ (ρ)∼2exp(∓iπ/3) (2/λ)1/3Ai

[
exp(±2iπ/3) (2/λ)1/3(λ− ρ)

]

(A-5)
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Moreover, when ρ →∞, (A-4) reduces to the large augment expansion
of the Hankel functions

H
(1,2)
λ (ρ) ∼

(
2
πρ

)1/2

exp
[
±i

(
ρ− λ

π

2
− π

4

)]
, ρ →∞ (A-6)

The Szegö-Olver uniform asymptotic expansion for the Legendre
function of the first kind is given by

Pλ−1/2(cos θ)∼
(

θ

sin θ

)1/2 {[
1 +

1
128λ2

(
1− 9

sin2 θ
− 6

cot θ

θ
+

15
θ2

)]

J0(λθ)− 1
8λ

(
1
θ
− cot θ

)
J1(λθ)

}
(A-7)

For |λ|θ À 1, (A-7) becomes

Pλ−1/2(cos θ) ∼
(

2
πλ sin θ

)1/2

·
[
cos

(
λθ − π

4

)]
, |λ|θ À 1 (A-8)

Similar to the relation Jλ(ρ) = 1
2

[
H

(1)
λ (ρ) + H

(2)
λ (ρ)

]
, the

Legendre function of the first kind can be represented as

Pλ−1/2(cos θ) = Q
(1)
λ−1/2(cos θ) + Q

(2)
λ−1/2(cos θ) (A-9)

and

Q
(1,2)
λ−1/2(cos θ) =

1
2

[
Pλ−1/2(cos θ)± 2i

π
Qλ−1/2(cos θ)

]
(A-10)

where Qλ−1/2(cos θ) is the Legendre function of the second kind. The

uniform asymptotic expansions for Q
(1,2)
λ−1/2(cos θ) are

Q
(1,2)
λ−1/2(cos θ)∼

(
θ

sin θ

)1/2{1
2

[
1+

1
128λ2

(
1− 9

sin2 θ
−6

cot θ

θ
+

15
θ2

)]

H
(2,1)
0 (λθ)− 1

16λ

(
1
θ
− cot θ

)
H

(2,1)
1 (λθ)

}
(A-11)

For |λ|θ À 1, (A-11) becomes

Q
(1,2)
λ−1/2(cos θ) ∼ exp [∓i (λθ − π/4)]

(2πλ sin θ)1/2
, |λ|θ À 1 (A-12)

We employ the uniform asymptotic expansions (A-2), (A-7), and
(A-11) to evaluate the values of the special functions at the integration
and difference nodes. The non-uniform asymptotic expansions (A-4),
(A-5), (A-6), (A-8), and (A-12) are used to derive the expressions with
the significant physical meanings, locate the saddle points, and find
the proper integration paths.
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