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Abstract—In this paper, the Adaptive Integral Method (AIM) has
been extended to characterizing electromagnetic scattering by large
scale finite periodic arrays with each cell comprising of either dielectric
or metallic objects, by utilizing accurate sub-entire-domain (ASED)
basis function. The solution process can be carried out in two steps.
In the first step, a small problem is solved in order to construct
ASED basis functions to be implemented for the second step. When
dielectric materials are involved in the cell which results in a large
number of unknowns for the small problem, the AIM can be used to
accelerate the solution process and reduce the memory requirement.
In the second step, the entire problem is solved using the ASED basis
function constructed in the first step. The AIM can be enhanced with
the ASED basis function implemented to solve the entire problem
more efficiently. When calculating the near interaction impedance
matrix, computation time can be significantly reduced by using the
near impedance matrix in the first step. The complexity analysis
shows that the computational time is O(N0 log N0)+O(M log M) and
memory requirement is O(N0) + O(M), where N0 denotes the number
of cells and M stands for the number of elements in one cell. The
results calculated respectively by the ASED-AIM and the existing AIM
are then compared and an excellent agreement has been observed,
which demonstrates the accuracy of the proposed method. In the
meantime, memory and computational time requirements have been
considerably reduced using the ASED-AIM as compared to the existing
AIM. Finally, an example with over 10 million unknowns is given to
demonstrate the efficiency of the proposed method.
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1. INTRODUCTION

There has been always a desire of developing fast solvers to alleviate
the stringent computational and memory requirements for various
engineering and scientific applications. When using the method of
moments (MoM) to solve electromagnetic scattering problems, the
resultant integral equations will usually lead to a dense matrix in the
large-dimensional linear system and they are usually solved by iterative
solvers such as Conjugate Gradient Method. The direct solver requires
O(N3) operations to solve such linear equations with the number N
of unknowns, while the iterative solver requires O(NiterN

2) operations
where Niter denotes the number of iterations. Both methods require
O(N2) memory to store the dense matrices. Thus, the stringent
computational and memory requirements have impeded the MoM from
solving large-scale problems which prevails in real life. Until now,
there are two kinds of fast solvers which are commonly adopted in the
electromagnetics community.

The first type of approaches includes Fast Multipole Method
(FMM) [1–3] and its extension, Multilevel Fast Multipole Algorithm
(MLFMA) [4–6] which were developed based on the addition theorem
and spherical multipole expansion. The second type of methods
was developed based on fast Fourier transforms and it includes the
Conjugate Gradient FFT (CG-FFT) method, the Adaptive Integral
Method (AIM), and the pre-corrected fast Fourier transform (pFFT)
method.

The CG-FFT method was developed and extended by [7–11].
The attracting feature of this method is that the computational
and memory requirements are O(N log N) and O(N), respectively.
But its major drawback is the staircase approximation, that is, the
uniform meshed grids assumed to represent the arbitrarily shaped
objects. This assumption results in the staircase error and affects
considerably the accuracy of the approach. In order to overcome
the staircase approximation of CG-FFT method, the Adaptive
Integral Method (AIM) was developed by [12]. The AIM has been
successfully applied in scattering problems associated with general
objects such as perfectly electric conducting (PEC) objects [13],
dielectric objects [14], composite dielectric and PEC objects [15],
magnetodielectric objects [16] and so on. The precorrected-FFT
(pFFT) method was proposed to solve the Laplace equation for static
problem of analyzing very large scale integrated circuits [17, 18]. The
pFFT method has then extended to solve the vectorial Helmholtz
equations for electromagnetic scattering problems [19] and it has
been applied successively to the solution of the SIE formulation
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for large conducting objects [20–22], and mixed conducting-dielectric
objects [23, 24]. Recently it was extended to the analysis of
inhomogeneous dielectric objects by using the VIE formulation [25, 26],
the hybrid volume surface integral equation for the analysis of
composite conducting and dielectric objects, and various antenna
analysis [27–30]. Although the pFFT method is very similar to the
AIM, they were originated differently in different areas, but almost at
the same time; most importantly, they have different mapping schemes,
which thus differentiates the two approaches.

Large-scale finite periodic structures have been topics of
considerable interests and various novel industrial, academic and
scientific applications. Therefore, accurate and fast analysis of these
structures are very important. However, full wave simulations for
these structures, even with the aid of the available fast solvers, are
very difficult since important properties (such as periodicity) are not
used in conventional solvers. Recently, some novel physics-based basis
function have been proposed to solve these challenging problems such
as sub-domain multilevel approach [31], synthetic basis function [32],
characteristic basis function [33–35] and accurate sub-entire-domain
(ASED) basis function [36–38]. In the present work, We adopt
the ASED basis function because it is specially tailored to periodic
structures and it considers the most important coupling among the
nearest neighboring cells which is neglected by simplified sub-entire-
domain (SSED) basis function and thus is more accurate than the
latter [36]. Two stages are required using ASED basis function to solve
the scattering problems by finite periodic arrays. The first step work
is to consider the most important mutual coupling among the nearest
neighbors to obtain the ASED basis function and the second step work
is to quantify the overall interactions of all elements based on the
ASED basis function. The ASED method has been accelerated using
CG-FFT [37] and it was later combined with the FMM to significantly
reduce memory requirement and computational complexity of FMM in
solving periodic array problems [38].

In this paper, we propose a new AIM approach to solve
the electromagnetic scattering by large-scale periodic arrays whose
elements are made of composite metallic and dielectric materials.
Therefore, this method can be used to characterize frequency selective
surfaces, photonic crystals and metamaterials with a large but finite
number repeating or periodic elements. The new approach, which is
referred to as the ASED-AIM, has all advantages of both ASED basis
functions and AIM. Since the ASED basis function is associated with
each cell of the periodic structures, number of unknowns have been
considerably reduced from MN0 to N0 where M denotes the number
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of unknowns in each cell while N0 stands for the number of cells in
the periodic structures. In the subsequent sections, we first formulate
the problem using the ASED-AIM algorithm for solving large-scale
finite periodic arrays comprising of metallic and dielectric objects.
The algorithm takes two steps in development. The first step is to
obtain the ASED basis function and the second step is to solve the
entire problem using the ASED basis function. In [38], disaggregation,
aggregation and translation have to be performed in k directions,
which needs O(M) times per iteration. In the presently proposed
ASED-AIM method, interpolation, projection and FFT only need to be
carried out once or twice per iteration. Thus, computational time can
be considerably reduced. Therefore, the computational time saving
scheme will be illustrated for calculating the near-field interaction
impedance matrix in the second step. Complexity analysis reveals that
in the present analysis, the memory requirement is O(M)+O(N0) while
the computational time is O(M log M) + O(N0 log N0). Numerical
results demonstrate the accuracy and efficiency ASED-AIM in solving
finite array problems where one example with over 10million unknowns
has been shown.

2. ASED-AIM FORMULATION

Electromagnetic scattering, by and propagation in, periodic conducting
objects such as frequency selective surfaces, periodic dielectric objects
such as photonic crystals, and periodic composite or hybrid conducting
and dielectric objects such as metamaterials can be characterized using
volume-surface integral equation (VSIE) method. The basic equations
are formulated below via the boundary conditions satisfied by electric
and magnetic field tangential components:

Ei(r) = E(r)−Es(r), r ∈ V (1)
Ei(r)

∣∣
tan

= − Es(r)|tan , r ∈ S. (2)

Equivalent electric volume current JV (r) and equivalent electric surface
current JS(r) are related to total electric field E(r) and scattered
electric field Es(r) via

JV (r) = jωκD(r) = jω(ε− ε0)E(r), r ∈ V (3)

Es(r) = −jωµ0

∫

V
G(r, r′)JV (r′)dV ′ − jωµ0

∫

S
G(r, r′)JS(r′)dS′

+
∇

jωε0

∫

V
G(r, r′)∇′ · JV (r′)dV ′ +

∇
jωε0

∫

S
G(r, r′)∇′ · JS(r′)dS′ (4)

where G(r, r′) denotes free space Green’s function, µ0 and ε0 represent
free space permeability and permittivity respectively, ε stands for
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permittivity in the dielectric object, and κ = (ε − ε0)/ε identifies the
contrast ratio of scatterer material and its background medium.

For simplicity, we consider 2D large scale periodic structures.
Three dimensional periodic problems can be analyzed in the same
fashion. Based on the ASED method, we can first solve an electrically
small problem with nine cells for 2D periodic structures. Then, we
will use the solution to construct the basis function for each cell and
then solve the entire problem of large scale. If there are M unknowns
for each cell and N0 = NxNy cells, the total number of unknowns will
be MN0. This number of unknowns can be significantly reduced to
N0 via the ASED method. For the p-th cell, surface currents can be
expanded, in order to ensure the normal continuity of surface current
in the metallic surface, as follows:

JS
p =

NS∑

m=1

IS
pm

fS
pm

; (5)

in order to ensure the normal continuity of electric flux density inside
the dielectric objects, Dp can be expanded as:

Dp =
1
jω

NV∑

m=1

IV
pm

fV
pm

; (6)

thus, volume currents can be expanded as

JV
p =

NV∑

m=1

IV
pm

κfV
pm

; (7)

where fS
pm

and fV
pm

denote respectively the RWG and SWG basis
functions associated with the m-th surface and volume basis functions
of the p-th cell, NS is the number of RWG basis functions while NV

is the number of SWG basis functions, and IS
pm

and IV
pm

stand for the
respective unknown coefficients to be solved for. Thus, electric current
for the p-th cell can be written as

Jp = JS
p + JV

p . (8)

The total current for the nine cell problem can be written as

J =
9∑

p=1

Jp. (9)

We use the Galerkin procedure of MoM to test the volume-surface
integral equations and obtain the following matrix equations:

[Zpmqn ] [Iqn ] = [Vpm ] (10)
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where pm denotes the m-th testing function in the p-th cell while qn

stands for the n-th basis function in the q-th cell. The impedance
matrix Z̄ comprises of 9 × 9 sub-matrices of size M ×M with the p-
th block row and the q-th block column representing the interaction
among elements inside the (p, q)-th cell, where M denotes the total
unknown number in a cell. For the p-th block row and q-th block
column sub-matrix, it can be written in terms of following block
matrices

[Zpmqn ] =

[
ZV V

pmqn
ZV S

pmqn

ZSV
pmqn

ZSS
pmqn

]
(11)

whose detailed block matrix expressions can be written as

ZV V
pmqn

=
1
jω

< fV
pm

,
1
ε
fV
qn

> +jωµ0 < fV
pm

, AV
qn

> (12)

− 1
jωε0

< fV
pm

, ∇φV
qn

> (13)

ZV S
pmqn

= jωµ0 < fV
pm

, AS
qn

> − 1
jωε0

< fV
pm

, ∇φS
qn

> (14)

ZSV
pmqn

= jωµ0 < fS
pm

, AV
qn

> − 1
jωε0

< fS
pm

, ∇φV
qn

> (15)

ZSS
pmqn

= < fS
pm

, fS
qn

> +jωµ0 < fS
pm

, AS
qn

>

− 1
jωε0

< fS
pm

, ∇φS
qn

> (16)

where

AV
qn

=
∫

V
GfV

qn
dV ′ (17)

AS
qn

=
∫

S
GfS

qn
dS′ (18)

φV
qn

=
∫

V
G∇′ · fV

qn
dV ′ (19)

φS
qn

=
∫

S
G∇′ · fS

qn
dS′. (20)

This equation can be solved using the AIM when M becomes large.
After solving the nine-cell problem, we can obtain the nine types of cell
basis functions and the use them to solve the entire problem. Now the
current density can be written as

J =
N0∑

p=1

jpJp (21)
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Figure 1. Mapping of the ASED basis functions. (a) The nine-cell
problem; (b) The entire problem.

where jp denotes unknowns to be solved for. The cell impedance matrix
elements (denoted by the superscript C herein and subsequently) can
be written as

ZC
pq =

M∑

m=1

M∑

n=1

IpmZpmqnIqn . (22)

Although there are N0 cells in the whole domain, only nine types of
basis functions will be utilized. These nine types of basis functions can
be mapped onto the entire domain shown in Fig. 1.

When N0 is large, we can use the AIM to accelerate the solution
process. We should combine the ASED approach with the AIM to solve
large-scale periodic structure problems. The basic idea of AIM is to
calculate the far-zone interaction via projecting the basis functions to,
and interpolating potentials from, grid space associated with each basis
function while the near zone interactions can be directly calculated.
Since free space Green’s function is translational invariant and the
calculation is made based on grid space, the FFT can be used to greatly
reduce the memory requirement and computational time. Using the
conventional AIM, the matrix vector multiplication can be written as

Z̄I = V̄ H̄ P̄ I + Z̄nearI (23)

where V̄ is the interpolation matrix, H̄ is the Green’s function matrix,
and P̄ is the projection matrix. The mapping and calculations are
made using the following four steps:

(i) to project the sources distributed on the basis functions onto the
regular grids by matching their vector and scalar potentials at
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some given test points to guarantee the approximate equality of
their far fields;

(ii) to evaluate the potentials at other grid locations produced by these
grid-projected sources by a 3-D convolution;

(iii) to interpolate the grid point potentials onto the testing functions,
where the projection and interpolation operators are represented
by sparse matrices, and the convolution can be carried out rapidly
using discrete FFTs; and

(iv) to compute the near-field interactions directly and remove the
errors introduced by the far-field operators.

The four steps of conventional AIM can be shown in Fig. 2.
For the far zone interaction, the impedance matrix elements can

be approximated as:

Zpmqn ≈ Z̃pmqn =
∑

s

∑
t

VmsHmsntPnt (24)

where
∑

denotes summation of all the grids associated with the basis
functions. Thus, for cell interaction in the far zone, we have

ZC
pq =

∑
m

∑
n

IpmZpmqnIqn

≈
∑
m

∑
s

∑
n

∑
t

IpmVmsHmsntIqnPnt

= V C
p HpqP

C
q (25)

where V̄C and P̄C are the interpolation and projection matrices for
cell basis functions. They can be written explicitly as:

V C
p =

∑
m

∑
s

IpmVms (26)

PC
q =

∑
n

∑
t

IqnPnt . (27)

Now, Using the ASED-AIM, the matrix vector multiplication can be
written as

Z̄C · ĪC = V̄C · H̄ · P̄C · ĪC + Z̄C,near · ĪC (28)

which takes the four steps to manipulate as follows:

(i) to sum-up all the projections from every basis functions within
each cell;

(ii) to evaluate the potentials at other grid locations produced by these
grid-projected sources using a 3-D convolution;
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(iii) to interpolate the grid point potentials onto each cell rather than
individual testing functions; and

(iv) to compute the near-field interactions directly from at most nine
near-by neighbors.

The four steps for implementing the ASED-AIM is shown graphically
in Fig. 3.

Figure 2. The pictorial rep-
resentation of the conventional
AIM. Step 1 denotes the projec-
tion of basis functions to asso-
ciated grids; Step 2 stands for
the grid potential calculation us-
ing the FFT; Step 3 represents the
interpolation of grid potentials to
testing functions; and Step 4 iden-
tifies the direct calculation of near
zone interactions. Shaded area
denotes the near zone for the ba-
sis function in black at the upper
left corner.

Figure 3. The pictorial represen-
tation of the ASED-AIM. Step 1
denotes the sum of projection
of basis functions in each cell;
Step 2 stands for the grid po-
tential calculation using the FFT;
Step 3 represents the interpola-
tion of grid potential to each cell
rather than each testing function;
and Step 4 identifies the direct
calculation of near zone interac-
tions, each cell has at most nine
nearest neighbors. Shaded area
denotes the near interaction for
the white cell at the upper left
corner.
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Figure 4. The unit cell of arrays in this paper. (a) Top view; (b)
3D view. The cell is made up of a dielectric cuboid with width 0.5λ,
length 0.5λ and height 0.1λ. The permittivity for the cuboid is εr = 2.
On top of the cuboid there is a metallic cross with parameters shown
in the figure.

3. COMPUTATIONAL COMPLEXITY AND MEMORY
REQUIREMENT FOR ASED-AIM

In the first step of ASED-AIM, the conventional AIM is carried out to
solve a problem with 9M unknowns. Thus, the memory requirement
and computational time are O(M) and O(M log(M)), respectively.
When composite metallic and dielectric objects are within a cell since
M is large, for example, M = 103, this portion of memory and
computational time should be taken into consideration as can be shown
in the numerical results later. In the second step of ASED-AIM,
since there are only nine types of cell basis functions, the memory
requirement for interpolation and projection matrix is a constant C and
the computational time is O(N0) where N0 denotes the number of cells
in the whole domain. For the FFT operation, since the grid number
Ng is proportional to the total number of cells N0, thus the memory
requirement is O(N0) and the computational time is O(N0 log N0).

In [38], disaggregation (equivalent to interpolation in the AIM),
aggregation (equivalent to projection in the AIM) and translation
(equivalent to the FFT in the AIM) have to be carried for each k
direction (which is of order M) respectively per iteration. However,
interpolation, projection only need once and the FFT twice per
iteration in the AIM. Thus, the computational time can be reduced
greatly. For the near interaction, the computational time will be quite
large if we calculate directly using

ZC,near
pq = ZC

pq − Z̃C
pq =

M∑

m=1

M∑

n=1

Ipm

(
Zpmqn − Z̃pmqn

)
Iqn (29)
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since this operation takes O(M2) multiplication and addition. In fact,
we can utilize the near zone interaction matrix Znear in the first step.
We know that Znear is a sparse 9M × 9M matrix, which is made up of
9× 9 sub-matrices with each matrix M ×M elements, each element is
(Zpmqn − Z̃pmqn). Consider the fifth row of the sub-matrices which are
calculated when the cell p is surrounded by nine most near neighboring
cells q, as shown in Fig. 1(a) where p = 4 and q = 0, . . . , 8. The sub-
matrices are all sparse, since

Zpmqn − Z̃pmqn = 0, dpmqn > dnear (30)

where dnear is the near zone threshold. Thus, O(M2) multiplications
and additions can be greatly reduced using sparse matrix vector
multiplication. For the near zone interactions, there are at most nine
near neighbors for each cell; thus the memory requirement and the
computational time are O(N0). Thus, the total memory requirement
is

O(M) + C + O(N0) + O(N0) = O(M) + O(N0); (31)

and the total computational time is

O(M log M) + O(N0) + O[N0 log(N0)] + O(N0)
= O(M log M) + O[N0 log(N0)]. (32)
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shown in Fig. 4, incident by θ-polarized plane wave with the normal
incident angle θi = 0◦ and φi = 0◦. The gap is 0.2λ in both x- and
y-directions. The results are computed using the AIM (circle line) and
the ASED-AIM (solid line).

4. NUMERICAL RESULTS

In this section, several examples will be given to demonstrate the
validity and efficiency of our code to solve electromagnetic scattering
by large scale periodic structures consisting of composite metallic and
dielectric objects. The GMRES solver is adopted as the iterative solver
and it terminates when the normalized residue falls below 10−3.

In the first case, we consider a 4× 4 array incident by θ-polarized
plane wave with the grazing incident angle θi = 90◦ and φi = 0◦.
Comparison is made between the ASED-AIM result and the AIM
result and an excellent agreement has been observed. The number
of unknowns for the 4 × 4 array is 17,296 and it requires memory of
125MB and computational time of 34 seconds when the ASED-AIM
is used, while it needs memory of 222MB and computational time of
112 seconds when the conventional AIM is utilized.

In the second example, we consider a 8 × 8 array incident by θ-
polarized plane wave with the oblique incident angle θi = 45◦ and
φi = 0◦. Comparison is made between the ASED-AIM result and the
AIM result and an excellent agreement has been observed. The number
of unknowns for the 8 × 8 array is 69,184 and it requires memory of
128MB and computational time of 38 seconds when the ASED-AIM
is used, while it needs memory of 888MB and computational time of
479 seconds when the conventional AIM is utilized.

As a third example, we consider a 12 × 12 array incident by θ-
polarized plane wave with the normal incident angle θi = 0◦ and
φi = 0◦. Comparison is made between the ASED-AIM result and the
AIM result and an excellent agreement has been observed. The number
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of unknowns for the 12×12 array is 155,664 and it requires memory of
132MB and computational time of 42 seconds when the ASED-AIM is
used, while it needs memory of 2,000 MB and computational time of
1,167 seconds when the conventional AIM is utilized.

From these cases, it is clear that when solving scattering by arrays
with different sizes and under arbitrarily incident plane waves, ASED-
AIM results agree well with conventional AIM results. However, the
memory requirement and CPU time are almost the same when the
ASED-AIM is applied, while the memory requirement and CPU time
increase proportionally to the array sizes when the conventional AIM
is utilized.

Subsequently, we investigate the computational complexity and
memory requirement of the ASED-AIM and the compare them with
those of the conventional AIM. Fig. 8 shows the relationship between
the computational time and the number of unknowns using the ASED-
AIM and the AIM. Fig. 9 shows the relationship between the memory
and the number of unknowns using the ASED-AIM and the AIM.
From these in Figs. 8 and 9, it is clear that when the AIM is used,
the computational time and the memory requirement are proportional
to the number N of unknowns. When N reaches 105, the memory
requirement is over 103 MB and CPU time is over 103 seconds. When
the ASED-AIM is used, the computational time and the memory
requirement are much less than those when the conventional AIM
is used, even when N reaches 10 million, the memory requirement
is still less than 103 MB and CPU time is less than 103 seconds.
Especially, they are nearly the same when the number of unknowns
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Figure 10. Bistatic RCS values of the 100× 100 array with each cell
shown in Fig. 4, incident by θ-polarized plane wave with the normal
incident angle θi = 0◦ and φi = 0◦. The gap is 0.5λ in both x- and
y-directions.

is less than 106. When the number of unknowns goes up beyond 106,
the memory requirement and the CPU time become proportional to the
number of unknowns. This observation agrees well with the previous
complexity analysis in literature. Since the memory requirement is
O(M)+O(N0), the computational time is O(M log M)+O(N0 log N0),
where M denotes the number of unknowns in each cell while N0

stands for the number of cells in the periodic structures. When N0 is
small as compared to M , M determines the memory requirement and
computational time. It means that most of CPU time and memory
have been spent on the first stage of the ASED-AIM. From our results,
120MB memory and 30 seconds computational time have been used in
the first stage. When N is smaller than 106, only severalMB of memory
and a few seconds of computational time have been used in the seconds
stage. When N is larger than 106, effect of N0 becomes dominant. The
memory requirement and CPU time both increase linearly with N .

Finally, we consider we consider a 100 × 100 array incident by
θ-polarized plane wave with the normal incident angle θi = 0◦ and
φi = 0◦. The total number of unknowns in this example is 10.81million.
The calculated radar cross section is shown in Fig. 10. For such
an electrically large structure with over 10 million unknowns, the
ASED-AIM only requires 636 MB memory and 570 seconds, which
demonstrates the efficiency of the new method in solving problems
of electromagnetic scattering by large-scale periodic structures.

5. CONCLUSION

In this paper, an extended AIM algorithm has been developed based
on the ASED basis functions to solve problems of electromagnetic



Progress In Electromagnetics Research B, Vol. 18, 2009 395

scattering by large-scale finite periodic arrays comprising of metallic
and dielectric objects. The volume-surface integral equation is used
to characterize the scattering property of periodic arrays. Two steps
are needed in the ASED-AIM to solve the large array problems.
The first step is to solve a small-scale problem with nine cells. We
obtain the ASED basis function after the first step is completed. In
the second step, we use the ASED basis function for each cell and
then solve the entire problem. The AIM has been thus modified
to incorporate the ASED basis function which reduces the memory
requirement and computational time significantly in solving the array
problems. Complexity analysis reveals that in the new algorithm, the
memory requirement is O(M) + O(N0) and the computational time is
O(M log M) + O(N0 log N0) where M is the number of unknowns in
each cell and N0 is the number of cells in the whole array. Numerical
results further demonstrate the accuracy and efficiency of the ASED-
AIM in comparison with conventional AIM in solving finite array
problems. One example with over 10 million unknowns is successfully
considered and its numerical results are illustrated.
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