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Abstract—The Goos-Hänchen (GH) shifts of the reflected waves
from nonlinear nanocomposites of interleaved nonspherical metal and
dielectric particles are investigated both theoretically and numerically.
First, based on spectral representation theory and effective medium
approximation, we derive the field-dependent effective permittivity of
nonlinear composites. Then, the stationary phase method is adopted
to study the GH shifts from nonlinear composites. It is found that
for a given volume fraction, there exist two critical polarization factors
Lc1 and Lc2, and bistable GH shifts appear only when L < Lc1 or
L > Lc2. Moreover, both giant negative and positive GH shifts
accompanied with large reflectivity are found, hence they can be
easily observed in experiments. The reversal of the GH shift may be
controlled by adjusting both the incident angle and the applied field.
Numerical simulations for Gaussian-type incident beam are performed,
and good agreement between simulated data and theoretical ones is
found especially for large waist width.

1. INTRODUCTION

Goos-Hänchen (GH) effect, which refers to the lateral shift deviated
from the position predicted by geometrical optics when a light
beam is totally reflected at a dielectric interface [1, 2], has received
much attention because of its potential applications in the design
of optical devices such as optical waveguide switch [3], optical
sensors [4], etc. This phenomenon was theoretically explained by
Artmann using stationary phase method [5], and was observed in
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experiments [6, 7]. In the past, the GH shifts were mainly associated
with the total reflection, and later they were also predicted in partial
reflection [8–10]. In fact, large positive or negative GH shifts for both
reflected and transmitted beams were found for oblique incidence in
different media or structures such as dielectric slabs [11, 12], metal
surfaces [13, 14], chiral materials [15–17], multilayered structures [18],
photonic crystals [19, 20], and negative refractive materials [21–23].
More recently, lateral shift of a normally incident beam reflected from
an antiferromagnet was predicted [24].

On the other hand, the realization of the tunable lateral shift or
the manipulation of the spatial beam position in a fixed configuration
were proposed. For instance, tunable refraction and reflection of self-
confined light beams at the interface between two regions of a nematic
liquid crystal were reported, and large nonlinear GH lateral shifts were
demonstrated [25]. Kerr-type nonlinear layers were introduced in the
one-dimensional photonic crystal and Kretschmann configuration to
control the bistable lateral shift [26, 27]. Wang et al. [28] proposed the
manipulation of the GH shift by a coherent control field. Later, electric
control of the lateral shifts for the reflected and transmitted beams was
realized due to the electro-optic effects [29, 30]. Chen et al. reported the
possibility of constructing an optical sensor for temperature monitoring
based on the Goos-Hänchen effect [4].

In this paper, we shall study a tunable Goos-Hänchen shift of the
reflected wave from nonlinear metal-dielectric composites. Both metal
and dielectric nanoparticles are assumed to be spheroidal in shape
and randomly distributed. For simplicity, we further assume that the
nanoparticles are identically aligned with the principal axis parallel to
x-axis [see Fig. 1]. Similar to the treatment in [31, 32], the nonlinear
composites can be regarded as a homogeneous effective material
with field-dependent effective permittivity. Therefore, through the
adjustment of the applied field, particles’ shape and volume fraction,
it is possible to change the field-dependent effective permittivity. As a
consequence, one can further control the lateral shift of the light beam
reflected from nonlinear nanocomposites.

The paper is organized as follows. In Section 2, we first
adopt spectral representation approach [33–35] and effective medium
approximation [36] to calculate effective field-dependent permittivity
of nonlinear composites. Then, we obtain the lateral shift according
to the stationary-phase approach [5]. Theoretical calculations and
numerical simulations for the lateral shifts are, respectively, presented
in Sections 3 and 4. Our conclusions and discussions are summarized
in Section 5.
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2. FORMALISM

Let’s assume a transverse-magnetic (TM) polarized wave beam with
incident angle θ from vacuum upon a nonlinear two-phase composite
(see Fig. 1), in which nonlinear metal ellipsoidal particles with volume
fraction p and linear dielectric ellipsoidal particles with volume fraction
1−p and permittivity ε2 are randomly dispersed but identically aligned
with each other. The metal particles have the nonlinear displacement-
electric field relation with the form [37]

D1 =
(
ε1 + χ1|E1|2

)
E1, (1)

where ε1 is the linear permittivity of metal components while χ1 is
the third-order nonlinear susceptibility. Here we consider the Goos-
Hänchen shift D of the incident wave reflected from the vacuum-
composite interface. In this connection, we would like to take two
steps to obtain the lateral shift of the reflected beam from nonlinear
composites.

First, we calculate effective field-dependent permittivity of the
nonlinear composite. In this regard, we indicate that the characteristic
particle size is far less than the incident wavelength, and the quasi-
static approximation is valid. Moreover, we assume that the dielectric
particles and metal particles are uniaxial ellipsoids with the shape
characterized by the depolarization factor L along x axis. In this
notation, a sphere has L = 1/3, while a needlelike particle has L → 0,
and a platelike particle has L → 1 [32].

Figure 1. Geometry indicating GH shift of reected wave from vacuum-
composite surface. The composite material consists of nonlinear metal
particles (the red ones marked 1) and dielectric particles (the yellow
ones marked 2). The dashed line is the path of reflection predicted
from geometrical optics.
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When the nonlinearity is not taken into account, the effective
linear permittivity of the composite material can be derived within
effective medium approximation [38],

p
ε1 − εe

εe + L(ε1 − εe)
+ (1− p)

ε2 − εe

εe + L(ε2 − εe)
= 0. (2)

Eq. (2) admits the solution,

εe

ε2
=

1
2(1− L)

[
1− 2L+

L− p

s
±

√
s2−2(p+L−2pL)s+(L−p)2

s

]
, (3)

where s ≡ ε2/(ε2 − ε1).
With spectral representation theory [33], εe can be written as

εe = ε2

[
1−

∫
m(x)
s− x

dx

]
, (4)

where the spectral density function m(x) is defined as

m (x) =
1
π

lim
δ→0+

Im
[
εe

ε2
(s = x + iδ)

]
. (5)

Substituting Eq. (3) into Eq. (5), we have [38]

m (x) =
p− L

1− L
θ(p− L)δ(x) +

{ √
(x−x1)(x2−x)

2πx(1−L) , if x1 < x < x2

0, otherwise,
,

(6)
where θ (p− L) is the step function, and

x1,2 ≡ p + L− 2pL±
√

(p + L− 2pL)2 − (p− L)2. (7)

Here we would like to mention that for present microstructures, the
spectral density function includes two parts [see Eq. (6)]. The first
part is δ function at x = 0 with weight (p − L)/(1 − L) for p > L.
Physically, this reflects the fact that effective medium approximation
has the percolation threshold pc = L. The second part denotes the
continuous spectrum.

For nonlinear composites, since the local field in nonlinear
metal components cannot be solved exactly, we shall use mean-field
approximation [35] to estimate the field-dependent permittivity of
metal,

ε̃1 ≈ ε1 + χ1〈|E|2〉1, (8)
where 〈|E|2〉1 is the spatial average of the local field squared inside the
nonlinear metal component and is expressed as [33, 34],

〈
|E|2

〉
1

=
|E0|
p

2 ∫ ∣∣∣∣
s̃

s̃− x

∣∣∣∣
2

m(x)dx, (9)
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with s̃ ≡ ε2/(ε2 − ε̃1).
As s̃ is dependent on 〈|E|2〉1, Eq. (8) is a self-consistent equation

for 〈|E|2〉1 and can be solved, at least numerically. Then, the effective
field-dependent permittivity ε̃e is determined by

p
ε̃1 − ε̃e

ε̃e + L(ε̃1 − ε̃e)
+ (1− p)

ε2 − ε̃e

ε̃e + L(ε2 − ε̃e)
= 0. (10)

In the second step, we adopt the standard Fresnel formula to derive
the reflection coefficient R for the incident angle θ [8] at the interface
between vacuum and nonlinear composite, that is,

R(θ) = |R|eiδ =
ε̃e cos θ −

√
ε̃e − sin2 θ

ε̃e cos θ +
√

ε̃e − sin2 θ
, (11)

where the corresponding phase δ(θ) is written as,

δ(θ) = Im

{
ln

[
ε̃e cos θ −

√
ε̃e − sin2 θ

ε̃e cos θ +
√

ε̃e − sin2 θ

]}
. (12)

Once the phase is given, one can apply the stationary-phase method
to derive the generalized expression for GH shift D [5],

D = − λ

2π cos θ

dδ(θ)
dθ

, (13)

where λ is the incident wavelength.

3. THEORETICAL CALCULATIONS

We are now in a position to perform numerical calculations on GH
shift of the reflected waves from the interface between vacuum and
the nonlinear composites containing metal and dielectric particles.
For simplicity, metal component is assumed to be silver, whose
permittivity is ε1 = −7.1 + 0.22i (at the wavelength λ ≈ 450 nm),
and nonlinear susceptibility is χ1 = 10−8esu. In addition, the
permittivity of the linear dielectric component is ε2 = 2.0 [35].
Actually, the metal/dielectric nonlinear composites have been created
by means of conventional melt and heat-treatment processes for several
decades [39, 40].

Figure 2 illustrates the GH shifts as a function of the applied field
E0 for different volume fraction p and different depolarization factor L.
We find that for given p and θ, the optical bistable behavior occurs only
when L is smaller than one critical value Lc1 or larger than the other
critical value Lc2. In other words, optical bistable behavior cannot be
observed when L is in the range from Lc1 to Lc2. For instance, Lc1 is
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. GH shift (in unit of λ) as a function of E0 for θ = 85◦ and
for different volume fractions: p = 0.2 for (a) and (b); p = 0.4 for (c)
and (d); p = 0.6 for (e) and (f); p = 0.8 for (g) and (h).
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0.015, and Lc2 is 0.96 for p = 0.6 [see Figs. 2(e) and 2(f)]. This can
be well understood if one carefully checks the spectral density function
m(x). Actually, since the first part in Eq. (6) is δ-type function with
the pole x = 0, it does not contribute to the bistable behavior. And the
continuous spectrum described by the second part of Eq. (6) tends to be
a δ-like function at x = 0 too. As a consequence, no optical bistability
(OB) appears. For p > L [see the left column in Fig. (2)], it is evident
that both the upper and lower threshold fields are strongly dependent
on L, and their values are relatively larger than those for p > L [see
the right column in Fig. (2)]. Actually, for p > L, the metal particles
are easily grouped into clusters, and form the connected path through
the whole composites due to some connected clusters. Therefore, the
local fields in the metal components are averaged out, and to realize
the bistable GH shift, one must apply the relatively large field. On
the contrary, for p < L, the probability that metal particles form the
clusters is low, and most of metal particles are isolated. Such behavior
is helpful to enhance the local fields due to surface plasmon resonances
even for small applied field. Therefore, the threshold applied field
is relatively small to realize the optical GH shift. In addition, we
note that the GH shift can be greatly enhanced when the applied field
decreases from the magnitude larger than the upper threshold field
and reaches the negative maximum near the down-switch threshold
field [see Figs. 2(b), 2(d), and 2(f)].

Figure 3 shows the dependence of the lateral shift on the external
electric field. Figs. 3(a) and 3(b) are typical hysteretic curves that
have been reported in some papers [26, 27]. From S-shaped bistable
curve [see Fig. 3(a)], we can see that the lateral shift increases with
the increase of the external field E0 and discontinuously jumps to the
upper branch when the external field reaches upper threshold field
E0,upper (about 11340 statvolt/cm). However, when E0 is reduced to
a value larger than E0,upper, the lateral shift does not jump back to
the lower branch, but continues to decease until E0 reaches the lower
threshold field E0,lower (about 8266 statvolt/cm) and then jumps back
to the lower branch. Fig. 3(b) is a Z-shaped curve which is different
from Fig. 3(a) for S-shaped curve. These typical curves are distinctive
properties of OB of GH shift for nonlinear nanocomposites. We further
find that bistable GH shift crosses itself in some microstructures, as
shown in Fig. 3(c). This anomalous phenomenon is rarely reported in
previous papers [41]. In detail, the curve jumps to the upper branch
at the upper threshold field E0,upper (about 8558 statvolt/cm) when E0

increases from a low value. And the discontinuous jump of the lateral
shift occurs when E0 decreases from a high value to the lower-switch
threshold E0,lower (about 2870 statvolt/cm). Note that although large
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(a) (b)

(c)

Figure 3. Dependence of the lateral shift (in units of λ) on the
external applied field for TM waves. The relevant parameters are
chosen to be: p = 0.6, L = 0.10, and θ = 85◦ for (a), p = 0.6,
L = 0.98, and θ = 85◦ for (b), and p = 0.2, L = 0.75, and θ = 63◦ for
(c). The dashed line represents the unsteady state.

negative lateral shifts exist, they are in unsteady state and cannot be
observed in experiments.

In Fig. 4, we show the phase diagram for the OB in p-L plot. It is
evident that there is a non-OB area between Lc1 and Lc2, and Lc1 and
Lc2 increase monotonously with the increase of the volume fraction p.
According to our calculations, for a given p and L < Lc1, the optical
bistable curves are generally S-shaped curves, and the OB region is
found to be enlarged with the decrease of L. However, for L > Lc2,
the hysteresis curves are Z-shaped curves, and the greater L is, the
larger the bistable region becomes. We should mention that for small
p such as p < 0.3, only upper OB region exists, while for large p > 0.75,
only lower OB region exists.

From the discussions above, we find that the giant negative GH
shift may be realized especially near the lower-threshold field in Z-
type bistable region (for instance, D ∼ −10λ as seen from Fig. 2(f)).
In what follows, we would like to show that for such a kind of
nonlinear composites at large applied field E0 ≈ 1.5× 104statvolt/cm,
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Figure 4. Phase diagram be-
tween OB and non-OB region in
p-L plot for θ = 85◦. Note that
Lc1 and Lc2 divide the picture into
three parts.

Figure 5. GH shift as a function
of E0 for p = 0.4 and L = 0.7.

the GH shift may be even giant positive (D ∼ 10λ) at angles most
closed to grazing incidence, as shown in Fig. 5. In addition, we
observe that the lateral shift can be tuned from negative to positive
through the suitable adjustment of the incident angle. As a matter
of fact, for E0 ≈ 1.5 × 104 statvolt/cm, there is a critical angle of
total reflection θc = arcsinn ≈ 75.4◦, where the refractive index of the
complex medium n = Re(

√
ε̃e) [42], i.e., n, is the real part of

√
ε̃e.

When the incident angle is greater than θc, the total reflection occurs,
and the GH shift is positive which is usually modified by the presence of
absorption. On the contrary, the GH shift is negative for θ < θc, and
the shift reaches negative maximum at the Brewster angle, which is
defined as θB = arctann ≈ 44.1◦. Moreover, we note that the reversal
of the GH shift from negative to positive values can also be realized
by the variation of the applied field.

4. NUMERICAL SIMULATIONS

In the end, we perform numerical simulations of the Gaussian-shaped
incident beam to demonstrate the validity of the above stationary-
phase method. The incident Gaussian beam has the following Fourier
integral [12],

ψin(x, y)|x=0 =
1√
2π

∫ +∞

−∞
A(ky) exp(ikyy)dky, (14)
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where A(ky) = wy exp[−(w2
y/2)(ky − ky0)2] is the Fourier spectrum of

the incident beam with ky0 = k0 sin θ, and wy = w0 sec θ (w0 is the
waist width of Gaussian beam). Consequently, the field of reflected
beam can be written as

ψr(x, y)|x=0 =
1√
2π

∫ +∞

−∞
R(ky)A(ky) exp(ikyy)dky, (15)

where R(ky) represents the reflection coefficient, which can be derived
as a function of ky from Eq. (11). For realistic calculations, it is enough
to perform the integration from −k0 to k0. The calculated lateral
shift of reflected beam is the value of y where the corresponding field
achieves the maximum [12].

We compare the theoretical results with numerical ones for the
bistable lateral shift in Fig 6. The waist widths of Gaussian beam are
chosen to be 10λ and 20λ. As shown in Fig. 6, the numerical results are
in good agreement with the theoretical ones from the stationary phase
method, especially when the width of the beam is wide enough. The
discrepancy between numerical and theoretical results is due to the
distortion of the reflected beam which can be eliminated by enlarging
the waist width. Actually, the wider the incident beam is, the closer
the numerical results are to the theoretical ones. Further numerical
simulations show that the numerical results are almost the same as the
theoretical ones when the waist width is 30λ or even larger.

(a) (b)

Figure 6. Bistable GH shifts based on the theory and the numerical
simulations for θ = 85◦. Other parameters are p = 0.6 and L = 0.10
for (a); p = 0.6 and L = 0.98 for (b).
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5. CONCLUSION AND DISCUSSION

In this paper, we have studied negative and positive GH shifts of
reflected waves from the nonlinear composites of nonspherical particles
both theoretically and numerically. We adopt spectral representation
theory and generalized effective medium approximation to derive the
effective field-dependent permittivity of the nonlinear composites.
Then, stationary phase method is used to investigate the GH shifts
of the reflected wave from the interface between vacuum and nonlinear
composite. For a given volume fraction, we predict that there are
two critical polarization factors Lc1 and Lc2, and bistable GH shift
vanishes when Lc1 < L < Lc2. Moreover, giant negative bistable shift
is found near the lower threshold field when the applied field larger
than the upper threshold field decreases. In addition, the transition
from negative GH shift to positive shift takes place by tuning the
incident angle or the applied field, and giant positive GH shift is
predicted at almost grazing incidence. Numerical simulations confirm
our theoretical analysis well, especially when the width of the Gaussian
wave is large enough.

Some comments are in order. We would like to point out the
observability of bistable GH shift. The magnitude of the reflectivity
|R|2 in the bistable region is about 0.3 ∼ 0.9. And the magnitude of
the reflectivity for giant positive GH shift is found to be 0.8 ∼ 0.9
for θ = 88◦. Therefore, the GH shift reported here should be
relatively easy to be observed compared to those discussed previously
in [10, 43]. Although our analysis has been performed in the case
that the metal particles are nonlinear, it can be generalized to the
nonlinear composites in which both metal and dielectric components
are nonlinear. In this connection, more complicated bistable GH shift
may be predicted. We believe that the nonlinear GH effect could have
potential applications for designing new type optical devices such as
bistable switches, optical sensors, etc. [25].
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