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Abstract—Specific rain attenuation is discussed from the viewpoint
of numerical solution for scattering and absorption of electromagnetic
waves related to dielectric spheres. Special attention is paid to the
quantitative evaluations considering the change of temperature and the
existence of multiple scattering effect. The analysis is based on the set
of Stratton’s vector spherical wave functions and its addition theorem,
which lead to the simultaneous linear equations for the expansion
coefficients with adaptively selected truncation numbers. Computed
extinction cross sections lead directly to the specific rain attenuation,
where the Weibull raindrop distribution model is used. It is discussed
how the dependence of the permittivity of water on temperature and
frequency affects the attenuation property. Furthermore, the effect
of multiple scattering is evaluated in terms of the root mean square of
attenuation deviation from the simple superposition of single scattering
(Mie’s) coefficients. Contrary to general belief, this deviation is the
highest at around the boundary between microwave and millimeter
wave bands.

1. INTRODUCTION

The attenuation by rain medium has received much attention [1–4],
since it is closely related to the quality of communication systems.
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Scattering and absorption of electromagnetic waves by small droplets of
water cause this attenuation, and the amount of it is usually indicated
by the specific rain attenuation in dB/km as a function of frequency
and rainfall intensity. A lot of works have been reported concerning
the above effect from the viewpoints of

• deterioration of cross polarization discrimination due to the tile of
vertical axis by wind [4, 5]

• change of temperature [4]
• incorporation of multiple scattering [6–8].

The top item concerning cross polarization requires the data of
distortion of raindrop shape from a sphere, e.g., by the famous model
by Pruppacher et al. [9]. The consideration of the other two items,
temperature and multiple scattering, also become precise when taking
acount of the distortion of drops. It is said that multiple scattering
effects are small in the low frequency region but cannot be neglected
at high frequencies. Previous investigations stated that this threshold
is about 30 GHz [6], and that slight difference occurs between the
models of first order and complete multiple scattering at 30 GHz
for precipitation more than 100mm/h [7]. Furthermore, Twersky’s
scattering formalism clarified that the multiple scattering is negligible
up to at least 1 THz for coherent transmission [8]. In spite of all these
works dealing with multiple scattering, it is still an important task
to quantitatively evaluate the interaction among realistic raindrops
distribution in a numerically exact manner. With regard to this, we
can make use of an effective tool based on the multipole expansion [10–
12], and thereby it is expected that even the spherical model yields
quantitative information to some extent. This is why we choose this
simple model as a starting point.

On the situations above, we seek for the effect of temperature and
multiple scattering on the amount of attenuation from the numerical
point of view. Employing the set of Stratton’s vector spherical wave
functions [13], combined with its addition theorem [14] and orthogonal
property [13], we obtain the simultaneous linear equations for the
expansion coefficients of electromagnetic fields. This procedure is the
same as that of Ref. [11], except that we make an adaptive choice
of the truncation numbers according to the sphere size to reduce the
CPU time. The specific rain attenuation can be evaluated directly from
the extinction cross section of a set of raindrops, which are randomly
allocated inside a big fictitious sphere. Among a lot of distribution
models to determine the raindrop size, including classical Marshall
and Palmer’s [15] and the Gamma one [16], we select the Weibull
model [17], because it was reported that the last model yields the best
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agreement with the experimental data [18]. As for the permittivity of
water, we use Liebe’s formula [19] since it works up to 1 THz and covers
the low frequency region where Debye type expression is effective.

Numerical results are demonstrated for the rain attenuation as a
function of frequency, rainfall intensity, and temperature. We discuss
the deviation of root mean square between our approach and the
Mie’s solution [20], the latter of which neglects the multiple scattering
terms. It will be shown that this deviation has a peak around the
boundary between microwave and millimeter wave bands depending
on the rainfall.

2. NUMERICAL METHOD

2.1. Field Expressions

Figure 1 shows a set of Q dielectric spheres arbitrarily distributed in
the air. The spheres have a common relative permitivity εr, and each
has a radius of aq (q = 1, 2, . . . , Q).

The total electromagnetic fields outside the spheres are decom-
posed into (Ei,Hi) +

∑Q
q=1(E

s(q),Hs(q)), where the superscripts i and
s(q) concern the incident field and the scattered field emitted from the
q-th sphere, respectively. The field penetrating into the p-th sphere is
denoted by (Ed(p),Hd(p)). With no loss of generality, we can assume
that the incident field is an x-polarized plane wave with unit electric
field amplitude which propagates in the +z direction. Omitting the
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Figure 1. Spherical scatterers and an incident plane wave.
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time factor ejωt, we write the above fields in terms of the multipole
coefficients and the vector spherical wave functions [13] as

(
Ei(r)

−jζ0Hi(r)

)
=e−jk0zp0

∞∑

n=1

n∑
m=−n

(
Vmn Umn

Umn Vmn

)(
M(1)

mn(k0rp)
N(1)

mn(k0rp)

)
(1)

(
Es(q)(r)

−jζ0Hs(q)(r)

)
=

∞∑

n=1

n∑
m=−n

(
Bqmn Aqmn

Aqmn Bqmn

)(
M(4)

mn(k0rq)
N(4)

mn(k0rq)

)
(2)

(
Ed(p)(r)

−jζHd(p)(r)

)
=

∞∑

n=1

n∑
m=−n

(
Dpmn Cpmn

Cpmn Dpmn

) (
M(1)

mn(krp)
N(1)

mn(krp)

)
(3)

where k0 = ω
√

ε0µ0, k = k0
√

εr, ζ0 =
√

µ0/ε0, and ζ = ζ0/
√

εr.
The symbols r and rp stand for the global and local position vectors,
respectively. That is, letting rp0 be a global position of the center of the
p-th sphere, we have the relation r = rp0+rp. The arguments k0rp and
krp in Eqs. (1)–(3) mean (k0rp, θp, φp) and (krp, θp, φp), respectively.

The vector spherical wave functions in Eq. (2) are defined by

M(4)
mn(ρ, θ, φ) = h(2)

n (ρ)mmn(θ, φ) (4)

N(4)
mn(ρ, θ, φ) = [jn(n + 1)/ρ]h(2)

n (ρ) sin θ π|m|n (θ) e jmφ r̂

+
{[

ρh(2)
n (ρ)

]′
/ρ

}
nmn(θ, φ) (5)

where mmn(θ, φ) = nmn × r̂ =
[
−mπ

|m|
n (θ) θ̂ − jτ

|m|
n (θ) φ̂

]
e jmφ,

πm
n (θ) = Pm

n (cos θ)/ sin θ, and τm
n (θ) = dPm

n (cos θ)/dθ, with h
(2)
n and

Pm
n being the spherical Hankel function of the second kind and the

associated Legendre function, respectively. The definitions of M(1)
mn and

N(1)
mn are identical with Eqs. (4) and (5), except that h

(2)
n is replaced

by the spherical Bessel function jn.
As for the incident field of Eq. (1), the formula for the spherical

wave expansion of a plane wave [13] yields Umn = −sgn(m) Vmn =
−j−n(2n + 1) δ|m|1/[2n(n + 1)], where δ|m|1 is Kronecker’s delta.

2.2. Discretization

The boundary condition on the dielectric surface is written as

r̂p ×

Fi(r) +

Q∑

q=1

Fs(q)(r)− Fd(p)(r)




∣∣∣∣∣∣
rp=ap

= 0

(0 ≤ θp ≤ π, 0 ≤ φp < 2π; p = 1, 2, . . . , Q) (6)
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where F stands for E and H. We substitute Eqs. (1)–(3) into
Eq. (6) and truncate the infinite series at n = Nq for the q-th sphere
(q = 1, 2, . . . , Q) according to its size. This leads us to linear equations
including 4

∑Q
q=1 Nq(Nq + 2) unknown coefficients Aqmn, Bqmn, Cpmn,

and Dpmn.
As seen from the right hand sides of Eqs. (1)–(3), the origins of

observation points are not unified at the present stage. In order to
shift the origin of (Es(q),Hs(q)) from rq0 to rp0, we apply the addition
theorem for vector spherical wave functions [14]

(
M(4)

mn(k0rq)
N(4)

mn(k0rq)

)
=

∞∑

ν=1

ν∑
µ=−ν

(
α

(4)
mn,µν(k0rpq) β

(4)
mn,µν(k0rpq)

β
(4)
mn,µν(k0rpq) α

(4)
mn,µν(k0rpq)

)

×
(

M(1)
µν (k0rp)

N(1)
µν (k0rp)

)
(|rp| < |rpq|) (7)

The translation coefficients α
(4)
mn,µν and β

(4)
mn,µν depend on the shift

vector rpq = rp0 − rq0. Making use of the orthogonal properties of the
vector spherical wave functions [13], and eliminating the coefficients
Cpµν and Dpµν , we arrive at the set of linear equations

(
Apµν

Bpµν

)
−

Q∑

q=1
(q 6=p)

Nq∑

n=1

n∑
m=−n

(
α

(4)
mn,µνĀpν β

(4)
mn,µνĀpν

β
(4)
mn,µνB̄pν α

(4)
mn,µνB̄pν

)(
Aqmn

Bqmn

)

=
(

UµνĀpν

VµνB̄pν

)
e−jk0zp0

(
ν = 1, 2, . . . , Np;
µ = −ν,−ν + 1, . . . , ν;
p = 1, 2, . . . , Q

)
(8)

where the argument k0rpq for α
(4)
mn,µν and β

(4)
mn,µν has been omitted for

simplicity, and

Āpν = −Jpν J̃
′
pν −

√
εrJ

′
pν J̃pν

∆(1)
pν

, B̄pν = −J ′pν J̃pν −√εrJpν J̃
′
pν

∆(2)
pν

(9)

with Jpν = k0apjν(k0ap), J̃pν = kapjν(kap), Hpν = k0aph
(2)
ν (k0ap),

∆(1)
pν = Hpν J̃

′
pν −

√
εrH

′
pν J̃pν , and ∆(2)

pν = H ′
pν J̃pν − √εrHpν J̃

′
pν . The

prime in J ′pν , J̃ ′pν , and H ′
pν denotes differentiation with respect to the

variable k0r or kr. Eq. (8) includes the same number of relations as
that of unknowns, and thereby, is numerically solved. After that, the
other coefficients are computed from

Cpµν = C̄pν Apµν/Āpν , Dpµν = D̄pν Bpµν/B̄pν (10)
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where
C̄pν = j

√
εr/∆(1)

pν , D̄pν = −j
√

εr/∆(2)
pν (11)

Eqs. (9) and (11) represent the set of Mie coefficients [20].

2.3. Conversion to Specific Rain Attenuation

Use of the asymptotic expressions of the spherical Hankel functions in
Eqs. (4) and (5) permits us to write the far scattered field (Es,Hs) =∑Q

q=1(E
s(q),Hs(q)) in the form of inhomogeneous spherical waves as

(
Es

θ(r)
Es

φ(r)

)
≈

(
ζ0H

s
φ(r)

−ζ0H
s
θ(r)

)
≈ e−jk0r

k0r

(
fθ(θ, φ)
fφ(θ, φ)

)
(r →∞) (12)

where the pattern functions fθ and fφ are written in terms of Aqmn

and Bqmn. The total scattered power is computed from

P s =
1
2

Re
[∫ 2π

0

∫ π

0
[Es(r)×Hs∗(r)] · r̂ |r→∞ r2 sin θ dθ dφ

]

≈ 1
2ζ0k2

0

∫ 2π

0

∫ π

0
[|fθ(θ, φ)|2 + |fφ(θ, φ)|2] sin θ dθ dφ (13)

where the asterisk denotes complex conjugate. Since the power density
of incident field is W i = 1/(2ζ0), the total scattering cross section is
given by σs = P s/W i = 2ζ0P

s.
Similarly, the power absorbed inside the spheres is defined by

P a =
1
2

Re
Q∑

q=1

[∫ 2π

0

∫ π

0
[Ed(q)(r)×Hd(q)∗(r)] · (−r̂q)

∣∣∣
r=aq

]

×a2
q sin θ dθ dφ (14)

which is in turn expressed by Cqmn and Dqmn. The absorption cross
section is given by σa = P a/W i = 2ζ0P

a.
The optical theorem states that the incident power in the forward

direction is weakened due to the scattering and absorption, based on
the law of energy conservation. The amount of this attenuation is
called the extinction cross section and written as

σe = σs + σa = −4π

k2
0

Im [fθ(0, 0)] ≈ 2π

k2
0

Im





Q∑

q=1

ejk0zq0

×
Nq∑

n=1

jn+1n(n+1)
[
Aq1n+Aq(−1)n−Bq1n+Bq(−1)n

]


 (15)
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Suppose that Q spheres are present inside the volume V [m3].
Then we can compute the specific rain attenuation from γ =
σe/V [m−1], with σe [m2] obtained from Eq. (15). Conversion into the
practical unit is made by

γ [dB/km] = γ [m−1]× 103 × 10 log10 e = 4343σe/V (16)

2.4. Modeling of Raindrop Distribution

Let us determine the series of radii aq as a function of rainfall intensity
R [mm/h]. If N (a) [m−3 mm−1] is the number of raindrops having the
radius between a and a + da [mm] per unit volume, then the integral

Ñ (a) =
∫ a

0
N (a′) da′ [m−3] (17)

gives the number of drops, the radii of which are less than a, per unit
volume. When the number of drops taken into account in the numerical
computation is Q, the radius aq [mm] is sampled by the rule

Ñ (aq)/Ñ (∞) = (q − 1/2)/Q (q = 1, 2, . . . , Q) (18)

Among lots of proposed models, we select the Weibull distribution [17]

N (a) = N0(η/ψ)(a/ψ)η−1e−(a/ψ)η
(19)

where N0 = 1000 m−3 mm−1, η = 0.95 R0.14, and ψ = 0.13R0.44.
Combination of Eqs. (18) and (19) yields

aq = ψ {− log [1− (q − 1/2)/Q]}1/η [mm] (20)

For example, if R = 75 mm/h and Q = 8, aq = 0.18, 0.35, 0.49, 0.63,
0.78, 0.95, 1.17, and 1.56 mm.

Suppose that Q drops are randomly distributed inside a fictitious
sphere having the radius af [m] and the volume V = 4π(af )3/3 =
Q/Ñ (∞). For example, if Q = 8, the Weibull distribution gives af =
0.124m regardless of R. Using uniform random numbers (ρ1, ρ2, ρ3)
falling in the interval (0, 1)3, we allocate the center of the q-th sphere
at rq0 = af (ρ1)1/3, θq0 = arccos(1− 2ρ2), and φq0 = (2ρ3 − 1)π.

3. NUMERICAL RESULTS

3.1. Convergence of the Solution

3.1.1. Truncation Numbers

Table 1 shows the extinction cross sections computed from Eqs. (8)
and (15) for three spheres with different radius aq. The choice of
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Table 1. Normalized extinction cross sections for three spheres
aligned parallel to the x axis in the order of radius (a1, a2, a3) =
(0.4, 0.8, 1.4) mm with 1 mm distance. The other parameters are
εr = 7.4−j12.6 and f = 100GHz. “Dim.” is the dimension of Eq. (8),
i.e., 4

∑3
q=1 Nq(Nq + 2).

Truncation N1 N2 N3 Dim. σe/
∑3

q=1(πa2
q)

Uniform 3 3 3 180 2.64418
4 4 4 288 2.73732
5 5 5 420 2.74814
6 6 6 576 2.74902
7 7 7 756 2.74908

Adaptive 4 5 7 488 2.74908

truncation numbers Nq is of two types: uniform and adaptive. In the
latter case, we employed the criterion Nq ≈ 1 + k0aq + 1.8(k0aq)0.4.
This was found by applying Debye’s asymptotic expansions into Mie’s
coefficients for |εr| À 1 such that Āqn and B̄qn in Eq. (9) keep four
digits accuracy. The lowest two lines in Table 1 exhibit the same result,
but the matrix size is reduced to 488/756 ≈ 2/3. The merit of this
reduction becomes more remarkable when the number of spheres is
increased.

The leftmost relation in Eq. (15) leads us to define the error on
the optical theorem as

εopt = 2 |σe − σs − σa|/|σe + σs + σa| (21)

This value is, however, always zero or on the order of machine epsilon
in the present numerical scheme, and thereby, we cannot use it as a tool
of accuracy check. Nevertheless, Eq. (21) is a good indicator whether
the double integral in Eq. (13) is precisely evaluated numerically.
The integrals with respect to θ and φ are treated by the Gauss-
Legendre quadrature rule and the trapezoidal formula, respectively.
Numerical experiment told us that choosing the number of nodes as∑3

q=1 Nq(Nq +2) is enough for both arguments, unless spheres are very
closely allocated.

3.1.2. Fineness of Drop Size Modeling

Let us discuss the relation between the specific rain attenuation and
the number of sampled drops. In such examinations, it is enough
to consider the case, for simplicity, where the drops are so sparsely
distributed that the interaction effect is very weak. Therefore, in the
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left hand side of Eq. (8), we neglect the triple sums which correspond
to multiple scattering. This simplifies the solutions as

Aqmn ≈ UmnĀqne−jk0zq0 , Bqmn ≈ VmnB̄qne−jk0zq0 (22)

Substituting the above expression into Eq. (15) and using Eq. (16),
we have the approximate forms of extinction cross section and specific
rain attenuation

σ̄e ≈ −2π

k2
0

Re
Q∑

q=1

Nq∑

n=1

(2n+1)
(
Āqn+B̄qn

)
, γ̄ =

4343 σ̄e

V
[dB/km] (23)

γ 
 [

d
B
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Figure 2. Dependence of specific rain attenuation γ̄ on frequency
f , rainfall intensity R, and number of sampled drops Q at 20◦C. (a)
R = 75 mm/h, (b) f = 100 GHz, (c) f = 25 GHz, and (d) f = 100 GHz.
Circles denote common data for (a) and (b).
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Figure 2 shows the behavior of rain attenuation for several
parameters. The permittivity of water is a function of temperature
and frequency, and one of the proposed formulas [19] gives, at 20◦C,
εr = 79.8− j4.4, 60.8− j32.7, 7.4− j12.6, and 4.0− j2.2 for 1, 10, 100,
and 1000 GHz, respectively. Fig. 2(a) shows frequency dependence of γ̄
for fixed R and several values of Q. The slight irregularity appears at
Q = 2 by the internal resonance of dielectric media, but it is relaxed for
larger Q due to field averaging. The distance between adjacent curves
in Fig. 2(a) is nearly halved as Q is doubled, which brings about good
convergence. This property is explicitly illustrated in Fig. 2(b) where
the abscissa is 1/Q. The plots for a fixed R are almost allocated in
line. Though we can extrapolate γ̄ as Q → ∞ in Fig. 2(b), the curve
at Q = 32 in Fig. 2(a) itself holds enough accuracy.

In Figs. 2(c) and (d), we compare our results with the ones based
on the exponential model by Marshall and Palmer [15] and the ITU-R
recommendation [21]. The curves except ITU-R do not include the
polarization effect, since the simple spherical model was employed for
them. We verified that these two distributions models predict close
values of γ̄ as f exceeds 80 GHz, and the same property was also
reported in Fig. 1 of Ref. [18].
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Table 2. Complex conjugate of relative permittivity of water [19].

f [GHz] ε∗r@20◦C ε∗r@5◦C − ε∗r@20◦C ε∗r@35◦C − ε∗r@20◦C
12 55.1 + j35.3 −14.1 + j4.5 +6.1− j7.5
22 33.2 + j36.2 −12.3− j4.7 +10.2− j1.4
40 16.7 + j27.0 −5.7− j6.8 +7.1 + j4.1

3.2. Temperature Effect

Figure 3 shows the deviation of the rain attenuation γ from that at
20◦C as a function of the frequency f , temperature T , and rainfall
R. In order that the results may be deterministic, we neglect the
multiple scattering effect which depends on the position of spheres.
The number of sampled spheres, Q, is 32. Figure 3(a) displays the
percentage difference of the attenuated powers

∆Ptemp (γ̄ − γ̄@T0 , `) =
e−2γ̄` − e−2γ̄@T0

`

e−2γ̄@T0
`

× 100% (24)

where ` [m] is the propagation length, γ̄ [1/m] is the approximate
attenuation constant, and T0 is the temperature reference. If the
units of γ̄ and l are dB/m and m, respectively, e−2γ̄` is replaced by
10−0.2γ̄`. We choose a practical length ` = 0.5 km, but the variation
of ∆Ptemp becomes large as ` increases. The curves tell us that the
shift direction alternates at f ≈ 8, 22, and 180 GHz. Note that Fig. 7
of Ref. [4] shows this sort of behavior at f ≈ 8 and 30GHz at 25◦C,
but no data are given for f > 40GHz. We can explain the property of
Fig. 3(a) by observing the permittivity of water as in Table 2, where the
complex conjugate is taken so that the positive large imaginary part
may be related to increasing the absorption loss. The absorption seems,
however, less effective than scattering. In fact, at 12 GHz, the raise of
temperature increases the real part of εr (−14.1 → +6.1 with 20◦C
base), leading to large scattering loss. On the other hand, at 40GHz,
the increase in the permittivity (−5.7 → +7.1) makes the raindrops
electrically large, which promotes the electromagnetic transparency of
rain medium and results in low attenuation. The dependence on the
rainfall intensity R is displayed in Fig. 3(b). As expected, the deviation
is nearly proportional to R at a fixed temperature.

3.3. Effect of Multiple Scattering

From the viewpoint of ray optics, the major contribution of multiple
scattering comes from doubly diffracted rays which hit two spheres.
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Because the distribution of realistic raindrops is not so dense as that
of snow, it is enough to take into account the double diffraction in order
to discuss the deviation from the fields made by Mie’s coefficients. In
this situation, we can replace the expansion coefficients under the triple
sum in Eq. (8) by their approximate expressions of Eq. (22). Then the
solution is written in the closed form as(

Apµν/Āpν

Bpµν/B̄pν

)
=

(
Uµν

Vµν

)
e−jk0zp0

+
Q∑

q=1
(q 6=p)

Nq∑

n=1

∑

m=±1

(
UmnĀqn VmnB̄qn

VmnB̄qn UmnĀqn

) (
α

(4)
mn,µν

β
(4)
mn,µν

)
e−jk0zq0 (25)

where the first and second terms in the right hand side correspond to
singly and doubly diffracted rays, respectively. Note that m is limited
to ±1 in Eq. (25), since Umn and Vmn vanish for the other m.

As before, we allocate Q raindrops in a fictitious sphere with radius
af . This distribution model is, however, not enough, since there are an
infinite number of drops around the fictitious sphere which can interact
with the ones inside it. Therefore, we put additional 26Q spheres
(q = Q + 1, Q + 2, . . . , 27Q) in the surrounding region af < r < 3af

with the same Weibull model, and take into account 27Q×Q doubly
diffracted rays. Here, the termination of the sum with respect to q in
Eq. (25) is altered from Q to 27Q. In order to reduce the CPU time,
we ignore a part of rays which hit small drops and have negligible
contribution to the results.

Figure 4 shows the percentage difference of the attenuated powers

∆Pmult(γ − γ̄, `) =
e−2γ` − e−2γ̄`

e−2γ̄`
× 100% (26)

where ` [m] is the propagation length, and γ (γ̄) [1/m] is the attenuation
constant by the multiple (single) scattering model. The free space
wavelength is roughly 1–100mm. The number Q is fixed at 4, i.e., there
are additional 104 drops in the surrounding region that cause multiple
scattering. The computation is tried 32 times with randomly changing
the position of spheres by the rule written in the last paragraph of
Sec. 2.4. The size of them follows the Weibull distribution. The values
of deviation at a fixed frequency are randomly distributed and almost
equally divided into the plus and minus sides. This is because the
phase shift determined by the distance between arbitrary two drops
has random nature for each trial. Comparison of Figs. 4(a) and (b)
tells us that the spread of deviation becomes large when the rainfall R
increases.
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Figure 4. Traces of 32 trials for computing difference of attenuated
power in Eq. (26), where multiple scattering is included (γ) and
neglected (γ̄) at 20◦C. The symmetric pair of curves denote ±∆Pmult

substituted by Eq. (27). (a) R = 50 mm/h, (b) R = 100 mm/h.
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Figure 5. Root mean square of deviation of specific rain attenuation
where multiple scattering is included (γ) and neglected (γ̄).

The pair of curves running through the dots are drawn by the root
mean square

(γ − γ̄)rms =

√√√√1
I

I∑

i=1

(γi − γ̄)2 (27)

where i is trial count and I is the number of trials, presently set at
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32. About 70% of the dots are held between the ±rms curves, which
nearly obeys the normal distribution. Note that rms value has a peak
at about 60 and 30 GHz for 50 and 100 mm/h, respectively.

Figure 5 shows the rms of rain attenuation for a wide range of
rainfall: The data for R = 10, 20, and 200mm/h are supplemented to
Fig. 4. The results by numerical experiment of 32 trials are plotted
by crosses and circles, the latter of which are quoted from Fig. 4. We
constructed the function fitting the above marks as

(γ−γ̄)rms =10(−0.58+1.22R̃) f̃3+(1.39−5.61R̃) f̃2+(1.96+6.90R̃) f̃−6.00 [dB/km]
(28)

where
f̃ = log10 f, R̃ = log10(R/20) (29)

with f and R measured in GHz andmm/h, respectively. The rms
values first increase in the range 1–30GHz, then saturate or even
decrease a little in the rest. The peak shifts to the low frequency
side when the rainfall becomes strong. The maximum rms mounts
to 1 dB/km at 200 mm/h and 31.6 GHz, corresponding to the power
fluctuation of signal by 10−0.2 ≈ 63%.

4. CONCLUSION

The multipole expansion solution has been developed to the problem
of scattering and absorption for arbitrarily allocated dielectric spheres
with different size. We derived the set of linear equations for the
expansion coefficients and demonstrated the effectiveness of choosing
truncation numbers in an adaptive manner. Computed extinction cross
sections lead directly to the specific rain attenuation, where the Weibull
raindrop distribution formula is used. After the check on numerical
convergence, we computed the value of rain attenuation by changing
temperature and by taking multiple scattering into account. It is
found that the dependence of the permittivity of water on temperature
and frequency affects the attenuation property. We also note that
the effect of multiple scattering becomes highest between microwave
and millimeter wave bands, i.e., 30–200 GHz, which is contrary to
previously accepted belief that the multiple scattering become evident
above several hundred gigahertz.

The present results and discussions will become more convincing
if we deal with raindrops of realistic shape [4]. Numerical analysis of
a set of such deformed bodies may be done by the transition matrix
method [22]. The Yasuura method would be effective as well, including
out-going and in-coming wave functions, which is a spherical coordinate
version of the deep grating case [23] where up- and down-going waves
are considered. This problem deserves further attention.
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