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Abstract—The enhancement of the photonic band gap in visible
region for a disordered one-dimensional dielectric-dielectric photonic
crystal (DDPC) is theoretically investigated. The DDPC is made of
alternating two high/low-index quarter-wave dielectric layers stacked
periodically. A disordered DDPC is modeled by randomly changing
the real thicknesses, or, the optical lengths, of the two dielectrics.
In a single disorder case, where the disorder only appears in one
of the two constituents, it is found the photonic band gap can be
preferably enhanced for the disordered high-index layer. In the double
disorder stack, in which both the constituent layers are disordered, the
photonic band gap can, however, be significantly enlarged. In addition,
numerical results illustrate that a flat band gap can be obtained by the
use of disorder in the optical length.

1. INTRODUCTION

A planar periodic stack structure made of high/low-index dielectric
bilayers is called a dielectric mirror (DM) or a distributed Bragg
reflector (DBR). Now it is generally referred to as a one-dimensional
dielectric-dielectric photonic crystal (1D DDPC) and has attracted
much attention because it can be easily fabricated by modern
experimental techniques. One of the most useful applications for a 1D
DDPC is that it can act as an excellent optical reflector [1], playing an
important part in the modern solid-state laser systems. The principle
of an optical reflector comes from the existence of the high-reflectance
bands or photonic band gaps (PBG) in some certain frequency (or
wavelength) ranges in a PC. Other possible useful applications of 1DPC
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include the time delay device [2], high quality filter [3, 4], nonlinear
diode [5], temperature and optical sensors [6, 7], and polarizer [8], as
well.

A simple 1D DDPC can be commonly formed by using the so-
called quarter-wave stack, (HL)N , where N is the number of periods
and H, L are the quarter-wave layers with their optical thicknesses
equal to nHdH = nLdL = λ0/4, where λ0 is the design wavelength
usually designed to fall around the center of PBG and ni, di, (i = H, L)
are their refractive indices and real thicknesses, respectively. In modern
photonic applications a PC with wider PBG is often needed and useful
for some purposes. There are several methods for widening the PBG.
According to the theory of 1DPC, the band gap can be enlarged
by the increase in the refractive index contrast nH/nL [9]. Also as
mentioned in Ref. [9], “Broadband reflectors can also be made by using
aperiodic layered medium in which the local period is an increasing (or
decreasing) function of position. Such structures are called chirped
periodic layered medium.” For the band gap enlargement based
on the chirped PCs, we mention Refs. [10–13]. Using the unequal
optical lengths in the constituent bilayer, PBG is also expected to be
enhanced [14]. The PBG can be further significantly extended in a
heterostructured PC that is formed by cascading two or more different
PCs [15–18].

In addition to the above-mentioned methods of enlargement of
PBG, there is another alternative, that is, a disordered 1DPC [19–
23]. In Ref. [23], a disordered PC is studied in a 1D metal-dielectric
photonic crystal (MDPC), in which the system contains a metal film,
Ag, sandwiched by two dielectric layers. With the additional metal
film, it becomes 1D ternary MDPC and consequently the band gap
can be extended pronouncedly. In this paper, we design a disordered
1D binary DDPC that is operated in the visible region. We shall show
that the band gap extension can be preferably seen when the disorder
is incorporated in the high-index layer. Moreover, a salient extension
in the band gap can be seen as the both layers are disordered in the
system. The analysis will be made through the reflectance calculated
by making use of the transfer matrix method (TMM) [9].

2. THEORY

The 1D DDPC is modeled as an ideal dielectric mirror, Air/(HL)N/S,
as depicted in Fig. 1, in which the high/low-index quarter-wavelength
layers H and L are stacked periodically on the substrate S (assumed
to be semi-infinite). The real thicknesses for H and L are respectively
denoted as dH = λ0/4nH and dL = λ0/4nL, where λ0 is the design
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Figure 1. An ideal dielectric mirror made of high/low-index quarter-
wavelength layers H and L, i.e., nHdH = nLdL = λ0/4, where λ0 is
the design wavelength.

wavelength. In addition, the number of periods is N .
The ideal dielectric mirror then no longer exists when the disorder

is incorporated in the structure, leading to a so-called disorder
dielectric mirror or disorder DDPC. The disorder is obtained by a
certain statistical distribution of layer thickness, that is, the degree of
disorder D is defined by the deviation from the ideal real thickness [20]:

D =

√
1
N

N∑
i=1

[
(dH,i − dH)2 + (dL,i − dL)2

]

dH + dL
, (1)

where dH and dL are the real thicknesses for an ideal dielectric mirror,
and dH,i and dL,i are the real thicknesses in the presence of the disorder
in the ith period, where i runs over from 1 to N . In general, dH,I , dL,i

and dH , dL are related by the variational parameters ∆xH and ∆xL

in the following relationship,

dH,i = dH + mi∆xH , dL,i = dL + mi∆xL, (2)

where the discrete numbers mi are randomly chosen from a Gaussian-
like distribution around dH or dL, the real thickness of the non-
disordered ideal quarter-wave stack, which is the case of mi = 0. For
mi > 0, the disordered real thickness is larger than the ideal real
thickness, whereas it will be smaller than the ideal real thickness at
mi < 0. A disordered thickness distribution is achieved as follows:
First, we arbitrarily select a fixed value in D. Second, with a chosen
λ0, we have the non-disordered real thicknesses, dH = λ0/4nH and
dL = λ0/4nL. Third, a set of discrete numbers in mi is given.
For the single disorder case such as disorder in high-index layer, we
have ∆xH 6= 0 and ∆xL = 0. With the above conditions and
substituting Eq. (2) into Eq. (1) enables us to determine ∆xH , which,
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according to Eq. (2), in turn gives the real thickness for the high-
index layer in each period. Similarly, we can obtain ∆xL for the
single disorder in low-index layer. As for the double disorder, we take
∆xH = ∆xL = ∆x. We can also easily determine ∆x according to
Eqs. (1) and (2). It should be mentioned that the sets of mi can,
of course, be arbitrarily assigned for both high- and low-index layers.
However, for the convenience of comparison, in the later calculation,
we shall take the same set of mi for the two constituent layers.

In addition to the definition of order of disorder in Eq. (1) to
make a disordered 1D DDPC, another method based on the deviation
of optical length is also available. In this case, the order of disorder is
defined as [21]:

D =

√
1
N

N∑
i=1

[
n2

H (dH,i − dH)2 + n2
L (dL,i − dL)2

]

nHdH + nLdL
. (3)

Here the disordered and ideal thicknesses are also related by Eq. (2).
We shall calculate the PBG for the disordered 1D DDPC by using
these two schemes simultaneously later.

Having obtained the disordered thicknesses for the entire system,
the normal-incidence reflectance R can be calculated by making use of
transfer matrix method (TMM). According to TMM, the total transfer
matrix is expressed as [9]

M =
(

M11 M12

M21 M22

)
= D−1

A

N
Π

i=1

[
DHPH,iD−1

H DLPL,iD−1
L

]
DS , (4)

where the dynamical matrix in Eq. (4) for the medium q is dependent
only on its refractive index given by

Dq =
(

1 1
nq −nq

)
, q = A(Air), H, L, and S, (5)

and the translational matrix in H is dependent on the real disordered
thickness expressed as

PH,i =
(

exp (jφH,i) 0
0 exp (−jφH,i)

)
, (6)

where the phase is φH,i = 2πnHdH,i/λ with λ being the wavelength of
the incident wave. Here the time part, exp(jωt), have been used for all
fields. Similarly, PL,i can be obtained with φL,i = 2πnLdL,i/λ. Then
the reflection coefficient r is calculated through the matrix elements in
Eq. (4), namely

r =
M11

M21
, (7)

which in turn gives rise to the reflectance, i.e., R = |r|2.
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3. NUMERICAL RESULTS AND DISCUSSION

Let us now present the numerical results for a typical example. The
high/low-index layers H and L are taken to be zinc sulfide (ZnS,
nH = 2.3) and magnesium fluoride (MgF2, nL = 1.38), respectively.
The substrate S is glass with nS = 1.52. All the above refractive
indices are available in Ref. [14]. The design wavelength is λ0 = 500 nm
and the number of periods is N = 11. The discrete numbers, mi,
i = 1, 2, . . . , N in Eq. (2) are taken to be −40, −26, −15, −13, −4, 0,
4, 13, 15, 26, and 40.

In Fig. 2, we plot the wavelength-dependent reflectance for a single
disorder dielectric mirror at three different degrees of disorder D =
0.05 (curve B), 0.1 (curve C), and 0.15 (curve D). Here the single
disorder means that the disorder is made only in the high-index layers
of ZnS, but the low-index MgF2-layer remains unchanged. The left
Figure 2(a) is calculated based on the disorder in the real thickness as
in Eq. (1), while in the right Figure 2(b) the disorder is made based on
the optical length in Eq. (3). In addition, the curve A is for an ideal
quarter-wave dielectric mirror whose band edges can be analytically
determined based on the theory of dielectric mirror, namely [14]

λL =
π (nHdH + nLdL)

a cos (−ρ)
, λR =

π (nHdH + nLdL)
a cos (ρ)

, (8)

where the Fresnel coefficient is ρ = (nH − nL)/(nH + nL). With the
given material parameters, the calculated left and right band edges
are λL = 430.7 nm and λR = 595.8 nm, in good agreement with the
locations shown in Fig. 2.
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Figure 2. Reflectance response as a function of the wavelength for
the ideal (A) and disorder dielectric mirrors (B, C, and D). The single
disorder is designed on ZnS layers with D = 0.05 (B), 0.1 (C), and 0.15
(D) and N = 11. Here (a) is for the disorder made by Eq. (1) and (b)
is by Eq. (3).
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With the introduction of disorder, it can be seen that the side
bands are totally raised up. The high-reflectance range (HRR) is
obviously enhanced as D is larger than 0.1 (curves C and D). For
a small disorder D = 0.01 (curve B), HRR is not enlarged, but even
shrinks a little. That is, in order to extend HRR, the degree of disorder
D cannot be chosen too small, and it should be better as D is larger
than 0.1. In addition, it is found the HRR is more flat based on the
disorder in optical length.
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Figure 3. Reflectance response as a function of the wavelength for
the ideal (A) and disorder dielectric mirrors (B, C, and D). The single
disorder is designed on MgF2 layers with D = 0.05 (B), 0.1 (C), and
0.15 (D) and N = 11. Here (a) is for the disorder made by Eq. (1) and
(b) is by Eq. (3).
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Figure 4. Reflectance response as a function of the wavelength for
the ideal (A) and double disorder dielectric mirrors (B, C, and D). The
double disorder is designed on both ZnS and MgF2 layers with equal
D = 0.05 (B), 0.1 (C), and 0.15 (D) and N = 11. Here (a) is for the
disorder made by Eq. (1) and (b) is by Eq. (3).



Progress In Electromagnetics Research, PIER 100, 2010 33

If now the single disorder is incorporated in the thickness of the
low-index layer (MgF2), but the thickness of high-index layer is kept
unchanged. In this case, the wavelength-dependent reflectance at three
different degrees of disorder D = 0.05, 0.1, and 0.15 is plotted in Fig. 3,
where (a) is for the disorder in the real thickness and (b) is for the
disorder in the optical length, respectively. It is seen that the side
bands are lifted up as the disorder is introduced, showing the same
feature as in Fig. 2. However, HRR is not changed so salient as in
Fig. 2, indicating that the effect of disorder on HRR due to the low-
index layer is weak. For D = 0.1 and 0.15, the HRR near right band
edge is more flat in the disorder scheme based on the optical length.

In Fig. 4, we plot the reflectance response for the case of double-
disorder DDPC, in which the disorder in real thickness is shown in (a)
and the disorder in optical length is in (b). Here both the high/low-
index layers are disordered with an equal degree of disorder D = 0.01
(curve B), 0.1 (curve C), and 0.15 (curve D), respectively. It can
be seen from the figure that side bands are greatly raised up and
consequently HRR is considerably enhanced. For D = 0.15, the flat
top HRR is seen. However, there are some slow and small variations
in the original flat top band at a larger D-value in (a). The existence
of such slow and small variations appearing in HRR can be ascribed to
the limited random numbers, mi in Eq. (2), (in fact, N = 11) in making
a disorder DDPC. If more numbers of mi are taken, say N = 19, it is
believed that a more flat top HRR will be recovered [20]. This slow
varying HRR is not seen when we use the disorder from the optical
length, as illustrated in (b), where a wide HRR is shown.
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Figure 5. Reflectance response as a function of the wavelength at
N = 11. Curve A: The ideal quarter-wavelength stack; Curve B:
D = 0.1, single disorder for MgF2; Curve C: D = 0.1, single disorder
for ZnS; Curve D: D = 0.1 double disorder. Here (a) is for the disorder
made by Eq. (1) and (b) is by Eq. (3).
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The above results are summarized and illustrated in Fig. 5, in
which we have taken single disorder in Fig. 2 (with D = 0.1) and 3
(with D = 0.1), and double disorder in Fig. 4 (D = 0.1) for disorder in
the real thickness (a) and in optical length (b), respectively. The effect
of disorder on the HRR is seen in this figure. In the single disorder
design, introducing the disorder in the high-index layer can be used
to apparently enhance band gap. As for the double disorder case, the
band gap can be further enlarged considerably.

4. CONCLUSION

By designing the disorder in the real thickness or the optical length
of the constituent layer of a 1D DDPC, the high-reflectance photonic
band gap can be enhanced. For the single disorder design we have
seen that the disorder in high-index layer is better than in low-index
layer in order to widen the HRR. In the case of double disorder a much
wider band gap can be obtained. It also shows that a better and more
flat HRR is seen when we design the disorder in the optical length.
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