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Abstract—In this paper, two full-wave simulators (one using finite
difference time domain method and the other the method of moments)
are developed, in order to analyze wireless communication in boxes
with metallic enclosure based on time-reversal ultra-wideband (TR-
UWB) technique. Impedance boundary conditions are exploited
to model realistic metallic walls; and parallel computing is applied
to relieve high computational resources requirements. Focusing in
both space and time is exhibited by numerical results in arbitrarily
shaped metallic boxes, which demonstrates the feasibility of TR-UWB
communication in metallic boxes.

1. INTRODUCTION

Boxes with metallic enclosure embody various realistic environments
in which wireless communication plays important roles. For instance,
in space stations wireless communication offers substantial movement
freedom to the astronauts [1]. As another example, sensors in a modern
automobile require cables with 1000 meters length and 50 kg weight;
and it is beneficial to replace these wired connections by wireless
ones [2]. In boxes with metallic enclosure, multiple reflections due
to surrounding reflective walls result in extremely dispersive channels,
which in turn makes wireless communication difficult [3]. In recent
years, time-reversal ultra-wideband (TR-UWB) technique has been
proved to have excellent potential to resolve the channel dispersion
issue [4, 5]. Unlike traditional equalization methods (such as RAKE [6])
that tackle dispersive channels directly, TR-UWB takes advantage
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of channel reciprocity and round-trip propagation to compensate the
channels “indirectly.” TR-UWB requires little channel estimation and
it focuses electromagnetic waves dispersed in both space and time.
Moreover, the more complex the channel is, the better performance
TR-UWB has [7]. Therefore, TR-UWB is expected to be a close-
to-optimal solution to wireless communication in extremely complex
environments like metallic boxes.

However, the complex electromagnetic propagation channels in
boxes with metallic enclosure make accurate modeling of TR-UWB
communication challenging. If carried out in the frequency domain,
the modeling unavoidably encounters matrices with poor condition
numbers due to the enclosed configurations. If time domain simulators
are applied, rich multiple reflections must be precisely tracked for a
long time. In the past, radio waves in enclosed-space were analyzed
by ray-tracing method, which approximates radio-frequency waves
by optical rays [8]. In this paper, TR-UWB communication in
arbitrarily-shaped boxes with metallic enclosure is rigorously analyzed
using full-wave simulations. To be specific, two Maxwell’s equations
solvers, one based on finite difference time domain (FDTD) and
the other the method of moments (MoM), are developed to track
electromagnetic wave propagation in the boxes. Impedance boundary
condition (IBC) is exploited to model realistic metallic walls [9]. The
MoM matrices are solved using LU decomposition instead of iterative
solvers, to mitigate the effects of poor condition number. In order
to relieve high computational resources requirements, these simulators
are implemented on parallel cluster computers. Results from FDTD
and MoM simulators match one another; and they show focusing in
both space and time after time-reversal and round-trip propagation
operations are carried out onto UWB impulses, which demonstrates
the feasibility of TR-UWB communication in boxes with metallic
enclosure.

This paper is organized as follows. In Section 2, numerical
methods to analyze TR-UWB communication in metallic boxes are
described. Some numerical results are presented in Section 3. Finally,
Section 4 relates to our conclusions.

2. NUMERICAL MODELING OF TR-UWB IN
METALLIC BOXES

A major distinction between TR-UWB and conventional communica-
tion schemes is that TR-UWB involves round-trip (backward and for-
ward) propagation. Backward propagation is depicted in Figure 1(a):
the receiver (RX) transmits narrow impulses; due to multi-path in the



Progress In Electromagnetics Research, PIER 101, 2010 65

TX
(broadened impulse)

RX
(narrow impulse)

(a) (b)

Box wall
Γ

TX

(time reversed from (a))

RX
(narrow impulse)

Undesired receiver
(weak signal)

n̂

Box wall
Γ

Figure 1. Illustration of TR-UWB communication in metallic boxes.
(a) Backward propagation (from RX to TX). (b) Forward propagation
(from TX to RX).

box, the impulses get broadened in time when they reach the trans-
mitter (TX). Next, the broadened impulses are time reversed at the
TX, and the time-reversed impulses are considered “carriers.” When
these carriers are transmitted by the TX (forward propagation in Fig-
ure 1(b)), narrow impulses result at the RX (temporal compression),
and receptions at any undesired receivers are weaker than that at the
RX (spatial focusing), as long as the channel between TX and RX is
reciprocal [5]. As a consequence, when the TX modulates the car-
riers, the RX does not suffer from severe inter-symbol or co-channel
interferences.

It is challenging to simulate electromagnetic waves’ propagation
in metallic boxes, because of two major reasons. The first reason is
related to the modeling of box walls. If the box walls are made of
perfect conductor, signals in the box would keep being bounced back
and forth for infinite number of times. In this paper, box walls are
assumed to be realistic metal and they are modeled by IBCs. Due to
the usage of IBC, the signals are attenuated (though slowly) by the
loss of imperfect conductor. The second reason is high computational
resources requirement. If the simulation is carried out in time
domain, many time steps are called for to track the long waveforms.
Frequency domain simulation has similar problems: small frequency
step size must be applied to the problem configurations illustrated
in Figure 1, especially around resonant frequencies. In this paper,
parallel computing is resorted to relieve the high computational cost.
Specifically, two parallel Maxwell’s equations solvers are developed
on cluster computers with distributed memory. One of them is a
time domain solver based on FDTD, and the other one is based on
MoM executed in frequency domain. In the rest of this section, full-
wave simulations of TR-UWB communication in metallic boxes using
parallel FDTD and MoM are described in detail.

In both FDTD and MoM simulators, box walls are modeled by
Leontovich IBC [10]:

n̂(r)× n̂(r)×E(r, t) = −Rs(t) ∗ n̂(r)×H(r, t), r ∈ Γ. (1)
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In the above, “Γ” denotes box boundary; n̂ is unit direction normal
to Γ (Figure 1); Rs(t) is the surface resistance in time domain and it
is the inverse Fourier transform of Zs(ω) =

√
jωµ/(σ + jωε), which

is the surface impedance in frequency domain; j =
√−1; ε, µ, and

σ are permittivity, permeability, and conductivity of the box wall,
respectively; and “*” denotes temporal convolution. In this paper,
it is assumed that the box wall is made of good metal thus σ À ωε.
As a result,

Zs(ω) =

√
jωµ

σ + jωε
≈

√
jωµ

σ
, (2)

and

Rs(t) =
1
π

Re

{∫ ∞

0

√
jωµ

σ
ejωtdω

}
=

d

dt

(√
µ

σπ

U(t)√
t

)
, (3)

where operator “Re” takes the real part of its argument, and U(t) is
Heaviside step function.

When FDTD is applied to analyze TR-UWB communication in
metallic boxes in this paper, regular Yee cells are used to discretize the
problem geometry [11]. During spatial discritization, there are only
tangential electric field samples and normal magnetic field samples over
Γ, as illustrated in Figure 2 (In Figure 2, Γ is marked by the shaded
surfaces). Regular update equations for Yee cells are utilized when no
samples on Γ are involved. Incorporation of IBC into FDTD update
equations for samples next to Γ is discussed in the below. Suppose y
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Figure 2. Illustration of FDTD simulator. (a) Next to boundary but
not next to boundary edge. (b) Next to boundary edge.
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component of magnetic field is sampled at location r̃ as H̃y(t), its time
derivative can be approximated by four electric field samples around
it (including upper Ex, lower Ex, left Ez, and right Ez), as illustrated
by Figure 2:

−µ̃
dH̃y(t)

dt
=

EU
x (t)−EL

x (t)
∆z

+
EL

z (t)−ER
z (t)

∆x
, (4)

where µ̃ is the permeability at location r̃, and ∆x, ∆y, and ∆z are the
side lengths of Yee cells. In the situation shown in Figure 2(a), ER

z is
located on Γ, hence it is related to H̃y through (1). Specifically,

ER
z (t) = −H̃y(t) ∗Rs(t) = −

{(
dH̃y(t)

dt

)
∗

(√
µ

σπ

U(t)√
t

)}
. (5)

Suppose magnetic fields are sampled in time at (n−0.5)∆t, and electric
fields are sampled in time at n∆t, n = 1, 2, 3, . . ., where ∆t is the time
step size in FDTD. Time derivative of H̃y on the left hand side of (4)
is approximated at

dH̃y(t)
dt

∣∣∣∣∣
t=n∆t

=
H̃y(n∆t + 0.5∆t)− H̃y(n∆t− 0.5∆t)

∆t
. (6)

Besides, the convolution on the right hand side of (5) can be calculated
as {(

dH̃y(t)
dt
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∗

(√
µ
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U(t)√
t
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t=n∆t

=
√
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]
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In the above, Z0 =
∫ 1/2
0 (t′)−1/2dt′ =

√
2 and Zm =∫ m+1/2

m−1/2 (t′)−1/2dt′ = 2(
√

m + 1/2 −
√

m− 1/2), m = 1, 2, 3, . . .

Substitution of (6) and (7) into (4) yields an update equation for H̃y:

H̃y(n∆t + 0.5∆t) = H̃y(n∆t− 0.5∆t)

− ∆t

Q∆x

√
µ

σπ
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where Q = µ̃ + Z0
∆t
∆x

√
µ
σπ . In the situation in Figure 2(b), both ER

z

and EU
x are located on Γ hence they both should be obtained from H̃y
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through IBC. The update equation for H̃y is

H̃y(n∆t + 0.5∆t) = H̃y(n∆t− 0.5∆t)

−∆t
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where Q1 = µ̃ + Z0∆t
(

1
∆x + 1

∆z

)√
µ
σπ . Clearly, Equation (9) can be

extended to all scenarios in which r̃ is located next to an edge of Γ,
and Equation (8) can be applied when r̃ is next to Γ but not next to an
edge of Γ. Since Γ is an enclosed surface, no other boundary conditions
are necessary in our FDTD simulator. The summations over m in
(8) and (9) are computationally expensive. To be more serious, they
make load balancing in subsequent parallelization a difficult task since
the boundary samples require much more computations than interior
samples. To resolve this difficulty, “matrix pencil” technique in [12] is
utilized to represent Zm as superposition of a few exponential terms

Zm =
L∑

l=1

αle
jβlm, m = 1, 2, 3, . . . , (10)

where the coefficients {αl, βl} can be obtained from the algorithm
in [12] with {Zm} as the input. As a result of (10), the summations
over m in (8) and (9) can be evaluated as

n−1∑

m=1

[
H̃y(m∆t + 0.5∆t)− H̃y(m∆t− 0.5∆t)

]
Zn−m =

L∑

l=1

Φn
l , (11)

where Φn
l is updated iteratively at each time step,

Φn
l =

{
H̃y[(n−1)∆t+0.5∆t]−H̃y[(n−1)∆t−0.5∆t]

}
αle

jβl +ejβlΦ(n−1)
l ,

with Φ1
l = Φ0

l = 0 (12)

Matrix pencil algorithm is chosen here to efficiently evaluate the
discrete convolution in Equation (11), as it offers better accuracy than
conventional algorithms like Prony’s [13]. In this paper, L = 15 is
enough to guarantee 10−3 relative accuracy in (10) for 100,000 time
steps.

To facilitate MoM simulation of TR-UWB communication in
metallic boxes, an equivalent problem is constructed as in Figure 3.
The box wall is removed and exterior region is filled with free space
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(a) Original problem (b) Equivalent problem
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Figure 3. Illustration of MoM simulator.

and zero fields. Surface electric current Js = n̂ × H and magnetic
current Ms = E × n̂ reside on Γ. When box wall is made of good
conductors, Ms’s contribution is negligible, hence a simple integral
equation is constructed:

n̂(r)× n̂(r)× [
Esca(r) + Einc(r)

]
= −ZsJs(r) = −

√
jωµ

σ
Js(r), (13)

where incident field Einc and scattered field Esca are produced by
original sources in the box and surface current Js, respectively. Rao-
Wilton-Glisson basis functions are used to discretize Js, and MoM
matrix results from Galerkin testing [14]. Compared to regular electric
field integral equations in [14], there is only one additional term on the
right hand side of (13), and it can be straightforwardly incorporated
into the MoM matrix. The MoM matrix is then inverted by LU
decomposition. As a direct inversion algorithm, LU decomposition
is preferred here since the resonant geometry in Figure 3 makes it very
hard for iterative algorithms to converge.

Both the FDTD and MoM solvers are implemented on
parallel cluster computers with distributed memory, to relieve high
computational resources requirements. In the parallel FDTD solver,
the Yee grids are partitioned into Px × Py × Pz blocks along x, y,
and z directions, and each processor is in charge of one block [15].
Information exchange occurs across the boundaries of adjacent blocks.
To parallelize the MoM solver, the discrete unknowns are evenly
distributed into multiple processors. No communication is necessary
when the MoM matrix is filled, and the matrix is inverted with the aid
of a parallel LU decomposition program. Message passing interface is
adopted in all of our parallel implementation [16].

3. NUMERICAL RESULTS

Two numerical examples are presented in this section to demonstrate
TR-UWB technique in metallic boxes.
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In the first example, the metallic box is an empty cube with side
length 0.33m as shown in the inset of Figure 4. An RX and a TX are
located at (0.165m, 0.135m, 0.165m) and (0.165 m, 0.24 m, 0.165 m),
respectively. Both RX and TX are assumed small dipoles oriented
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Figure 4. Numerical results for backward propagation (RX to TX)
in a cubic box.
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along z direction. During backward propagation, the signal at RX is

Izl = cos[2πf0(t− t0)]e−(t−t0)2/(2τ2) (Am), (14)
with f0 = 1GHz, τ = 1.2 ns, and t0 = 5τ . Source waveform at the
RX and electric field received at the TX (from FDTD simulator) are
plotted in Figure 4. Unsurprisingly, when the box wall is assumed to be
made of perfect conductor, the received electric field is endless in time
due to infinite number of multiple reflections. When the conductivity
of box wall is 10 S/m, the received signal is attenuated in time by
the imperfection of box wall. In Figure 5, the signals received at TX
obtained by FDTD and MoM solvers when σ = 10S/m are compared
to one another, and excellent agreement is observed. Next, when
σ = 10 S/m, the TX time reverses the signal that it receives at the
backward propagation stage and transmits the reserved signal to the
RX. The transmitted waveform at TX and electrical field received at
the RX are plotted in Figure 6. Clearly, a short impulse is observed at
the RX (temporal compression). Contrast between this impulse and
the rest in time gets even sharper with the increase of σ. Thanks to
the high contrast, the impulse can be easily detected by simple non-
coherent receiver circuitries.

In the second example, the metallic box is of “L” shape and filled
with air, as depicted in the inset of Figure 7. The conductivity of the
box walls is 10 S/m. An RX and a TX, which are small z-orientated
dipoles, are located at (0.1 m, 0.4m, 0.2m) and (0.4 m, 0.05 m, 0.2m),
respectively (note that the RX and TX do not have line-of-sight
interactions). Round-trip propagation similar to that in the first
example is carried out. During backward propagation, an impulse is
transmitted from the RX to the TX. The impulse’s waveform is as that
in (14), with f0 = 4.5GHz, τ = 0.318 ns, and t0 = 6τ . As expected, the
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a cubic box.
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Figure 7. Numerical results for TR-UWB communication in an L-
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signal at the TX after backward propagation (in Figure 7(a)) consists
of a long tail. After this signal is time reversed and transmitted by
the TX though forward propagation, a narrow impulse is achieved at
the RX (Figure 7(b)). In addition to temporal compression, spatial
focusing is also exhibited in Figure 7(b). Six locations around the RX
are picked with coordinates (0.05m, 0.35 m, 0.2m), (0.05 m, 0.25 m,
0.2m), (0.1m, 0.3 m, 0.2 m), (0.1m, 0.2 m, 0.2m), (0.15 m, 0.35 m,
0.2m), and (0.15 m, 0.25 m, 0.2 m), respectively. Compared to the
signal at the RX, electric fields at these six locations are much weaker.

4. CONCLUSIONS

In this paper, numerical studies are carried out to demonstrate
feasibility of applying TR-UWB technique to wireless communication
in boxes with metallic enclosure. Two parallel full-wave simulators
(one based on FDTD and the other MoM) are developed, with metallic
walls modeled by IBC. Focusing of electromagnetic waves on both
space and time is exhibited by numerical results in arbitrarily shaped
metallic boxes. Current research efforts include incorporating wide-
band antenna models, which call for hybrid simulation of MoM and
FDTD.
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